Skip to main content
Log in

Structure, stability and electronic properties of bimetallic atomic chains of Au–Ag and Au–Pt

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Quantum confinement of electrons in atomic chains provides the most powerful and versatile means to control electronic, optical, magnetic and thermoelectric properties of materials needed to make diodes, spin valves and optical labels. Furthermore, the alloying of metallic atoms in different compositions produces novel mechanical, electronic and chemical behaviours in bimetallic chains as well as in other structures. This motivated us to perform theoretical investigations on the structure, stability, magnetic and electronic properties of bimetallic atomic chains of Au–Ag and Au–Pt, by using Vienna ab-initio simulation package (VASP), which is based on the density functional theory (DFT) within generalised gradient approximation. We have used tension and cohesive energy criteria to assess the stability of the Au–Ag and Au–Pt atomic chains. A comparison between the computed cohesive energies of various possible structures are made to suggest the most probable chain structures that can occur in break junction experiments. Our computed results suggest that the ground state of the Au–Ag and Au–Pt atomic chains should have zig-zag geometry. Furthermore, the most favoured chain structures that can be formed at the last stage of nanowires stretching are: (i) an atomic chain with alternate arrangement of equal number of Au and Ag / Pt atoms and (ii) an atomic chain where two Ag / Pt atoms are separated by one Au atom. Our results on the electronic band structure and optical properties suggest that the Au–Ag atomic chain could be of semiconducting nature, while the most stable Au–Pt chain is metallic in nature. A spin-polarised calculation with the inclusion of spin–orbit coupling shows that the Au–Pt atomic chains are magnetic, if the number of Au atoms is not more than the number of Pt atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S Link, Z L Wang and M A El-Sayed, Phys. Chem. B 103, 3529 (1999)

    Article  Google Scholar 

  2. F Sato et al, Appl. Phys. A: Mater. Sci. Process. 81, 1527 (2005)

    Article  ADS  Google Scholar 

  3. J M Krans, J M van Ruitenbeek, V V Fisun, I K Yanson and L J Jongh, Nature (London) 375, 767 (1995)

    Article  ADS  Google Scholar 

  4. C J Muller, J M Ruitenbeek and L J de Jongh, Physica C 191, 485 (1992)

    Article  ADS  Google Scholar 

  5. H Ohnishi, Y Kondo and K Takayanagi, Nature (London) 395, 780 (1998)

    Article  ADS  Google Scholar 

  6. V Rodrigues, T Führer and D Ugarte, Phys. Rev. Lett. 85, 4124 (2000)

    Article  ADS  Google Scholar 

  7. V Rodgrigues and D Ugarte, Phys. Rev. B 63, 073405 (2001)

    Article  ADS  Google Scholar 

  8. T Kizuka, S Umehaa and S Fujisawa, Jpn. J. Appl. Phys. L71(Part 1), 240 (2001)

    Google Scholar 

  9. H Koizumi, Y Oshima, Y Kondo and K Takayanagi, Ultra Microsc. 17, 88 (2001)

    Google Scholar 

  10. D Snchez-Portal, E Artacho, J Junquera, P Ordejn, A Garca and J M Soler, Phys. Rev. Lett. 83, 3884 (1999)

    Article  ADS  Google Scholar 

  11. S R Bahn and K W Jacobsen, Phys. Rev. Lett. 87, 266101 (2001)

    Article  ADS  Google Scholar 

  12. A Hasmy, L Rincón, R Hernández, V Mujica, M Márquez and C González, Phys. Rev. B 78, 115409 (2008)

    Article  ADS  Google Scholar 

  13. E M Smelova, A L Klavsyuk, K M Tsysar and A M Saletskii, Moscow Univ. Phys. Bull. 68, 92 (2013)

    Article  ADS  Google Scholar 

  14. E Z da Silva, F D Novaes, A J R da Silva and A Fazzio, Phys. Rev. B 69, 115411 (2004)

    Article  ADS  Google Scholar 

  15. J C Tung and G Y Guo, Phys. Rev. B 81, 094422 (2010)

    Article  ADS  Google Scholar 

  16. E Tosatti, S Prestipino, S Kostlmeier, A Dal Corso and F D Di Tolla, Science 12, 291 (2001)

    Google Scholar 

  17. L F Seivane, V M Garca-Surez and J Ferrer, Phys. Rev. B 75, 075415 (2007)

    Article  ADS  Google Scholar 

  18. W Fa and J Dong, J. Chem. Phys. 128, 244703 (2008)

    Article  ADS  Google Scholar 

  19. P A da Silva Autreto, D S Galvaoand and E Artacho, J. Phys.: Condens. Matter 26, 435304 (2014)

    Google Scholar 

  20. C Ataca, S Cahangirov, E Durgun, Y R Jang and S Ciraci, Phys. Rev. B 77, 214413 (2008)

    Article  ADS  Google Scholar 

  21. A Delin and E Tosatti, J. Phys.: Condens. Matter 16, 8061 (2004)

    ADS  Google Scholar 

  22. A Kumar, A Kumar and P K Ahluwalia, Physica E 46, 259 (2012)

    Article  ADS  Google Scholar 

  23. A I Yanson, G Rubio-Bollinger, H E van den Brom, N Agraït and J M van Ruitenbeek, Nature (London) 395, 783 (1998)

    Article  ADS  Google Scholar 

  24. P Z Coura, S B Legoas, A S Moreira, F Sato, V Rodrigues, S O Dantas, D Ugarte and D S Galva, Nano Lett. 4(7), 1187 (2004)

    Article  ADS  Google Scholar 

  25. A L Klavsyuka, S V Kolesnikov, I K Gainullin and A M Saletsky, Eur. Phys. J. B 5, 331 (2012)

    Article  ADS  Google Scholar 

  26. J Bettini et al, Nat. Nano Technol. 1, 182 (2006)

    Article  ADS  Google Scholar 

  27. X Teng et al, Nano Lett. 9(9), 3177 (2009)

    Article  ADS  Google Scholar 

  28. A Md Asaduzzaman and M Springborg, Phys. Rev. B 72, 165422 (2005)

    Article  ADS  Google Scholar 

  29. P E Blochl, Phys. Rev. B 50, 17953 (1994); G Kresse and D Joubert, Phys. Rev. B 59, 17958 (1999)

    Article  ADS  Google Scholar 

  30. G Kresse and J Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  31. G Kresse and J Furthmller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  32. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  33. H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. G P Francis and M C Payne, J. Phys.: Condens. Matter 2, 4395 (1990)

    ADS  Google Scholar 

  35. R Peierls, Surprises in theoretical physics (Princeton University Press, Princeton, 1979)

    Google Scholar 

Download references

Acknowledgements

Ms Mudra R Dave acknowledges the financial support received from the University Grants Commission, New Delhi in the form of a UGC-BSR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudra R Dave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, M.R., Sharma, A.C. Structure, stability and electronic properties of bimetallic atomic chains of Au–Ag and Au–Pt. Pramana - J Phys 93, 55 (2019). https://doi.org/10.1007/s12043-019-1823-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1823-2

Keywords

PACS Nos

Navigation