Skip to main content
Log in

Symmetry analysis of some nonlinear generalised systems of space–time fractional partial differential equations with time-dependent variable coefficients

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, the Lie group analysis method is applied to carry out the Lie point symmetries of some space–time fractional systems including coupled Burgers equations, Ito’s system, coupled Korteweg–de-Vries (KdV) equations, Hirota–Satsuma coupled KdV equations and coupled nonlinear Hirota equations with time-dependent variable coefficients with the Riemann–Liouville derivative. Symmetry reductions are constructed using Lie symmetries of the systems. To the best of our knowledge, nobody has so far derived the invariants of space–time nonlinear fractional partial differential equations with time-dependent coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y Mao, Pramana – J. Phys. 91(1): 9 (2018)

    Article  ADS  Google Scholar 

  2. K Ayub, M Y Khan, Q Mahmood-Ul-Hassan and J Ahmad, Pramana – J. Phys. 89(3): 45 (2017)

    Article  ADS  Google Scholar 

  3. G Wang, A H Kara and K Fakhar, Nonlinear Dyn. 82(1), 281 (2015)

    Article  Google Scholar 

  4. W X Ma, R K Bullough and P J Caudrey, J. Nonlinear Math. Phys. 4(3), 293 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  5. W X Ma and M Chen, Appl. Math. Comput. 215(8), 2835 (2009)

    MathSciNet  Google Scholar 

  6. W X Ma, X Yong and H Q Zhang, Comput. Math. Appl. 75(1), 289 (2018)

    Article  MathSciNet  Google Scholar 

  7. W X Ma, J. Geom. Phys. 133, 10 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. W X Ma and Y Zhou, J. Differ. Equ. 264(4), 2633 (2018)

    Article  ADS  Google Scholar 

  9. J Y Yang, W X Ma and Z Qin, East Asian J. Appl. Math. 8(2), 224 (2018)

    Article  MathSciNet  Google Scholar 

  10. F K Keshi, B P Moghaddam and A Aghili, Comput. Appl. Math. 1, 4821 (2018)

    Article  Google Scholar 

  11. B P Moghaddam, J T Machado and A Babaei, Comput. Appl. Math. 1, 1 (2017)

    Google Scholar 

  12. B P Moghaddam and J A T Machado, Fundam. Inf. 151(1), 293 (2017)

    Article  Google Scholar 

  13. B P Moghaddam and J A T Machado, Fractals Calc. Appl. Anal. 20(4), 1023 (2017)

    Google Scholar 

  14. J H He and X H Wu, Chaos Solitons Fractals 30(3), 700 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. S Zhang and H Q Zhang, Phys. Lett. A 375(7), 1069 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. J Zhao, B Tang, S Kumar and Y Hou, Math. Probl. Eng. 11, 11 (2012)

    Google Scholar 

  17. H Xu, S J Liao and X C You, Commun. Nonlinear Sci. Numer. Simul. 14(4), 1152 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. A Elsaid, Commun. Nonlinear Sci. Numer. Simul. 16(9), 3655 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  19. A M Wazwaz, Appl. Math. Comput. 111(1), 53 (2000)

    MathSciNet  Google Scholar 

  20. J Fadaei, Appl. Math. Sci. (Ruse) 5(25), 1307 (2011)

    MathSciNet  Google Scholar 

  21. J H He and X H Wu, Comput. Math. Appl. 54(7), 881 (2007)

    Article  MathSciNet  Google Scholar 

  22. P J Olver, Applications of Lie groups to differential equations (Springer-Verlag, New York, 1986) Vol. 107

  23. N H Ibragimov, A V Aksenov, V A Baikov, V A Chugunov, R K Gazizov and A G Meshkov, CRC handbook of Lie group analysis of differential equations (CRC Press, Boca Raton, FL, 1995) Vol. 2

  24. H A Zedan, S Shapll and A Abdel-Malek, Nonlinear Dyn. 82(4), 2001, (2015)

    Article  Google Scholar 

  25. C Chen and Y L Jiang, Commun. Nonlinear Sci. Numer. Simul. 26(1), 24 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. G W Wang and M S Hashemi, Pramana – J. Phys. 88(1): 7 (2017)

    Article  ADS  Google Scholar 

  27. M Arshad, D Lu and J Wang, Commun. Nonlinear Sci. Numer. Simul. 48, 509 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y Chen and H L An, Appl. Math. Comput. 200(1), 87 (2008)

    Article  MathSciNet  Google Scholar 

  29. X L Ding and J J Nieto, Commun. Nonlinear Sci. Numer. Simul. 52, 165 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. X L Ding and Y L Jiang, Commun. Nonlinear Sci. Numer. Simul. 30(1), 139 (2016)

    Article  MathSciNet  Google Scholar 

  31. I Naeem and M D Khan, Commun. Nonlinear Sci. Numer. Simul. 42, 560 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. A Prakash, M Kumar and K K Sharma, Appl. Math. Comput. 260, 314 (2015)

    MathSciNet  Google Scholar 

  33. K Singla and R K Gupta, J. Math. Phys. 58(5), 051503 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. G W Wang and T Z Xu, Nonlinear Dyn. 76(1), 571 (2014)

    Article  Google Scholar 

  35. X J Yang, D Baleanu and H M Srivastava, Local fractional integral transforms and their applications (Elsevier\(/\)Academic Press, Amsterdam, 2016)

    MATH  Google Scholar 

  36. K Singla and R K Gupta, J. Math. Phys. 57(10), 101504 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Y Luchko and R Gorenflo, Fract. Calc. Appl. Anal. 1(1), 63 (1998)

  38. V Kiryakova, Generalized fractional calculus and applications (Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994) Vol. 301

  39. Q Huang and R Zhdanov, Physica A 409, 110 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  40. R A Leo, G Sicuro and P Tempesta, Fractals Calc. Appl. Anal. 20(1), 212 (2017)

  41. K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993)

    Google Scholar 

  42. I Podlubny, Fractional differential equations (Academic Press, Inc., San Diego, CA, 1999) Vol. 198

  43. S G Samko, A A Kilbas and O I Marichev, Fractional integrals and derivatives: Theory and applications (Gordon and Breach Science Publishers, Yverdon, 1993)

    MATH  Google Scholar 

  44. S Das, Functional fractional calculus, 2nd edn (Springer-Verlag, Berlin, 2011)

    Book  MATH  Google Scholar 

  45. H A Ghany, A O El Bab, A Zabel and A A Hyder, Chin. Phys. B 22(8), 080501 (2013)

    Article  Google Scholar 

  46. A Atangana and A Secer, Abstr. Appl. Anal. 8, 8 (2013)

    Google Scholar 

  47. K A Gepreel and A Al-Thobaiti, Indian J. Phys. 88(3), 293 (2014)

    Article  ADS  Google Scholar 

  48. T Bakkyaraj and R Sahadevan, Nonlinear Dyn. 77(4), 1309 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions that improved the presentation of the paper. Support of CSIR Research grant to the corresponding author for carrying out the research work is fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljinder Kour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kour, B. Symmetry analysis of some nonlinear generalised systems of space–time fractional partial differential equations with time-dependent variable coefficients. Pramana - J Phys 93, 21 (2019). https://doi.org/10.1007/s12043-019-1791-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1791-6

Keywords

PACS Nos

Navigation