Skip to main content
Log in

A novel approach via mixed Crank–Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The purpose of the present study is to obtain numerical solutions of the modified Korteweg–de Vries equation (mKdV) by using mixed Crank–Nicolson scheme and differential quadrature method based on quintic B-spline basis functions. In order to control the effectiveness and accuracy of the present approximation, five well-known test problems, namely, single soliton, interaction of double solitons, interaction of triple solitons, Maxwellian initial condition and tanh initial condition, are used. Furthermore, the error norms \(L_{2}\) and \( L _{\infty }\) are calculated for single soliton solutions to measure the efficiency and the accuracy of the present method. At the same time, the three lowest conservation quantities are calculated and also used to test the efficiency of the method. In addition to these test tools, relative changes of the invariants are calculated and presented. After all these processes, the newly obtained numerical results are compared with results of some of the published articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W X Ma and Y Zhou, J. Diff. Equ. 264, 2633 (2018)

    Article  ADS  Google Scholar 

  2. W X Ma, J. Geom. Phys. 133, 10 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. W X Ma, X Young and H Q Zhang, Comput. Math. Appl. 75, 289 (2018)

    Article  MathSciNet  Google Scholar 

  4. J Y Yang, W X Ma and Z Qin, Anal. Math. Phys. 8, 427 (2018)

    Article  MathSciNet  Google Scholar 

  5. J Y Yang, W X Ma and Z Qin, East Asia J. Appl. Math. 8, 224 (2018)

    Article  Google Scholar 

  6. R M Miura, SIAM Rev. 18, 412 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  7. W Hereman and A Nuseir, Math. Comput. Simul. 43, 13 (1997)

    Article  Google Scholar 

  8. M J Ablowitz and P A Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  9. M J Ablowitz and H Segur, Solitons and inverse scattering transform (SIAM, Philadelphia, 1981)

    Book  Google Scholar 

  10. R Bullough and P Caudrey, Solitons: Topics in current physics (Springer, Berlin, 1980) Vol. 17

    Google Scholar 

  11. P G Drazin and R S Johnson, Solitons: An introduction (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  12. R M Miura, J. Math. Phys. 9, 1202 (1968)

    Article  ADS  Google Scholar 

  13. T Nagatani, Physica A 264, 581 (1999)

    Article  ADS  Google Scholar 

  14. J Zhou, Z K Shi and J L Cao, Physica A 396, 77 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. C S Gardner, J M Greene, M D Kruskal and M R Miura, Phys. Lett. A 19, 1095 (1967)

    Article  Google Scholar 

  16. C H Su and C S Gardner, J. Math. Phys. 10, 536 (1969)

    Article  ADS  Google Scholar 

  17. M Salahuddin, Plasma Phys. Control. Fusion 32, 33 (1990)

    Article  ADS  Google Scholar 

  18. W X Ma and Y You, Trans. Am. Math. Soc. 357(5), 1753 (2004)

    Article  Google Scholar 

  19. A Başhan, Turkish J. Math. 42, 373 (2018)

    Article  MathSciNet  Google Scholar 

  20. O E Hepson, A Korkmaz and I Dag, Pramana – J. Phys. 91: 59 (2018)

    Article  ADS  Google Scholar 

  21. A Başhan, Y Uçar, N M Yağmurlu and A Esen, J. Phys. Conf. Ser. 766, 012028 (2016)

    Article  Google Scholar 

  22. A Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 13, 331 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. A H Salas, Appl. Math. Comput. 216, 2792 (2010)

    MathSciNet  Google Scholar 

  24. D Kaya, Commun. Nonlinear Sci. Numer. Simul. 10, 693 (2000)

    Article  ADS  Google Scholar 

  25. L R T Gardner, G A Gardner and T Geyikli, Comput. Methods Appl. Mech. Eng. 124, 321 (1995)

    Article  ADS  Google Scholar 

  26. A Biswas and K R Raslan, Phys. Wave Phenom. 19(2), 142 (2011)

    Article  ADS  Google Scholar 

  27. T Ak, S B G Karakoç and A Biswas, Sci. Iran B 24(3), 1148 (2017)

    Google Scholar 

  28. T Ak, S B G Karakoç and A Biswas, Iran. J. Sci. Technol. Trans. Sci. 41, 1109 (2017)

    Article  MathSciNet  Google Scholar 

  29. T Geyikli, Finite element studies of the modified KdV equation, Doctoral dissertation (University College of North Wales, Bangor, UK, 1994)

  30. G A Gardner, A H A Ali and L R T Gardner, Numer. Methods Eng. 1, 590 (1990)

    Google Scholar 

  31. R Bellman, B G Kashef and J Casti, J. Comput. Phys. 10, 40 (1972)

    Article  ADS  Google Scholar 

  32. R Bellman, B G Kashef, E S Lee and R Vasudevan, Computers and mathematics with applications (Pergamon, Oxford, 1976) Vol. 1, p. 371

    Google Scholar 

  33. J Cheng, B Wang and S Du, Int. J. Solids Struct. 42, 6181 (2005)

    Article  Google Scholar 

  34. C Shu and Y L Wu, Int. J. Numer. Methods Fluids 53, 969 (2007)

    Article  ADS  Google Scholar 

  35. A G Striz, X Wang and C W Bert, Acta Mech. 111, 85 (1995)

    Article  Google Scholar 

  36. I Bonzani, Comput. Math. Appl. 34, 71 (1997)

    Article  MathSciNet  Google Scholar 

  37. A Korkmaz and I Dağ, Int. J. Comput.-Aided Eng. Softw. 28(6), 654 (2011)

    Article  Google Scholar 

  38. A Başhan, S B G Karakoç and T Geyikli, Kuwait J. Sci. 42(2), 67 (2015)

    MathSciNet  Google Scholar 

  39. A Başhan, Y Uçar, N M Yağmurlu and A Esen, Eur. Phys. J. Plus 133, 12 (2018)

    Article  Google Scholar 

  40. S B G Karakoç, A Başhan and T Geyikli, Sci. World J. 2014, 1 (2014)

    Article  Google Scholar 

  41. R C Mittal and R K Jain, Appl. Math. Comput. 218, 7839 (2012)

    MathSciNet  Google Scholar 

  42. A Başhan, N M Yağmurlu, Y Uçar and A Esen, Chaos Solitons Fractals 100, 45 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  43. A Başhan, N M Yağmurlu, Y Uçar and A Esen, Int. J. Mod. Phys. C 29(6), 1850043 (2018)

    Article  ADS  Google Scholar 

  44. P M Prenter, Splines and variational methods (John Wiley, New York, 1975)

    MATH  Google Scholar 

  45. S G Rubin and R A Graves, A cubic spline approximation for problems in fluid mechanics, Technical Report (National Aeronautics and Space Administration, Washington, 1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Başhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başhan, A. A novel approach via mixed Crank–Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation. Pramana - J Phys 92, 84 (2019). https://doi.org/10.1007/s12043-019-1751-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1751-1

Keywords

PACS

Navigation