Skip to main content
Log in

Coexisting multiscroll hyperchaotic attractors generated from a novel memristive jerk system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, two kinds of novel non-ideal voltage-controlled multi-piecewise cubic nonlinearity memristors and their mathematical models are presented. By adding the memristor to the circuit of a three-dimensional jerk system, a novel memristive multiscroll hyperchaotic jerk system is established without introducing any other ordinary nonlinear functions, from which \(2N+2\)-scroll and \(2M+1\)-scroll hyperchaotic attractors are achieved. It is exciting to note that this new memristive system can produce the extreme multistability phenomenon of coexisting infinitely multiple attractors. Furthermore, the dynamical behaviours of the proposed system are analysed by phase portraits, equilibrium points, Lyapunov exponents and bifurcation diagrams. The results indicate that the system exhibits hyperchaotic, chaotic and periodic dynamics. Especially, the phenomenon of transient chaos can also be found in this memristive multiscroll system. Additionally, the MULTISIM circuit simulations and the hardware experimental results are performed to verify numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. L O Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  2. D B Strukov, G S Snider, D R Stewart and R S Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  3. M Itoh and L O Chua, Int. J. Bifurc. Chaos 18(11), 3183 (2008)

    Article  Google Scholar 

  4. B Muthuswamy and L O Chua, Int. J. Bifurc. Chaos 20, 1567 (2010)

    Article  Google Scholar 

  5. B Muthuswamy and P P Kokate, IETE Tech. Rev. 26(6), 417 (2014)

    Article  Google Scholar 

  6. B C Bao, J P Xu and G H Zhou, Chin. Phys. B  20(12), 113 (2011)

    Article  Google Scholar 

  7. B C Bao, W Hu, J P Xu, Z Liu and L Zou, Acta Phys. Sin. 262, 1775 (2011)

  8. B C Bao, F W Hu and Z Liu, Chin. Phys. B 23(07), 307 (2014)

    Article  Google Scholar 

  9. B C Bao, H Bao, N Wang, M Chen and Q Xu, Chaos Solitons Fractals 94, 102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. J Ma, Z Q Chen and Z L Wang, Nonlinear Dyn 81, 1275 (2015)

    Article  Google Scholar 

  11. Q Yu, B C Bao, F Hu, Q Xu and M Chen, Acta Phys. Sin. 63, 240505 (2014)

    Google Scholar 

  12. Z J Li and Y C Zeng, Chin. Phys. B 22, 148 (2011)

    Google Scholar 

  13. Q Xu, Y Lin and B C Bao, Chaos Solitons Fractals 83, 186 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. B R Xu, Acta Phys. Sin. 62, 190506 (2013)

    Google Scholar 

  15. H F Li, L D Wang and S K Duan, Int. J. Bifurc. Chaos 24, 1450099 (2014)

    Article  Google Scholar 

  16. C H Wang, H Xia and L Zhou, Int. J. Bifurc. Chaos 27(6), 1750091 (2017)

    Article  Google Scholar 

  17. C H Wang, H Xia and L Zhou, Pramana – J. Phys. 88(2): 34 (2017)

    Article  ADS  Google Scholar 

  18. X Y Hu, C X Liu, L Liu, Y P Yao and G C Zheng, Chin. Phys. B 26(11), 110502 (2017)

    Article  ADS  Google Scholar 

  19. F Yuan, J Y Wang and X W Wang, Chaos 26, 073107 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. C H Wang, X M Liu and H Xia, Chaos 27(3), 033144 (2017)

    Article  ADS  Google Scholar 

  21. U Feudel, Int. J. Bifurc. Chaos 18, 1607 (2008)

    Article  Google Scholar 

  22. C Li and J C Sprott, Int. J. Bifurc. Chaos 24(10), (2014)

  23. A N Pisarchik and U Feudel, Phys. Rep. 540(4), (2014)

  24. S Zhang, Y C Zeng and Z J Li, Chaos 28, 013113 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. C Hens, S K Dana and U Feudel, Chaos 25(5), (2015)

    Article  MathSciNet  Google Scholar 

  26. L O Chua, Appl. Phys. A 102, 765 (2011)

    Article  ADS  Google Scholar 

  27. S P Adhikari, M P Sah, H Kim and L O Chua, IEEE Trans. Circuits Syst. I: Regul. Pap. 60(11), 3008 (2013)

    Article  Google Scholar 

  28. Z Yan and P Yu, Chaos Solitons Fractals 35, 333 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. C X Liu and J J Lu, Int. J. Bifurc. Chaos 24, 1299 (2010)

    ADS  Google Scholar 

  30. F Yuan, G Y Wang and X W Wang, Chaos 26, 073107 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. G B Astaf’ev, A A Koronovskii and A E Hramov, Tech. Phys. Lett. 29, 923 (2003)

    Article  ADS  Google Scholar 

  32. S J Cang, G Y Qi and Z Q Chen, Nonlinear Dyn. 59(3), 515 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundations of China under Grant No. 61471310 and the Natural Science Foundations of Hunan Province, China under Grant No. 2015JJ2142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Zeng, Y. & Li, Z. Coexisting multiscroll hyperchaotic attractors generated from a novel memristive jerk system. Pramana - J Phys 91, 82 (2018). https://doi.org/10.1007/s12043-018-1657-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1657-3

Keywords

PACS Nos

Navigation