Skip to main content
Log in

Why PeV scale left–right symmetry is a good thing

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Left–right symmetric gauge theory presents a minimal paradigm to accommodate massive neutrinos with all the known conserved symmetries duly gauged. The work presented here is based on the argument that the see-saw mechanism does not force the new right-handed symmetry scale to be very high, and as such some of the species from the spectrum of the new gauge and Higgs bosons can have masses within a few orders of magnitude of the TeV scale. The scale of the left–right parity breaking in turn can be sequestered from the Planck scale by supersymmetry. We have studied several formulations of such just beyond Standard Model (JBSM) theories for their consistency with cosmology. Specifically, the need to eliminate phenomenologically undesirable domain walls gives many useful clues. The possibility that the exact left–right symmetry breaks in conjunction with supersymmetry has been explored in the context of gauge mediation, placing restrictions on the available parameter space. Finally, we have also studied a left–right symmetric model in the context of metastable supersymmetric vacua and obtained constraints on the mass scale of right-handed symmetry. In all the cases studied, the mass scale of the right-handed neutrino \(M_\mathrm{R}\) remains bounded from above, and in some of the cases the scale \(10^9\) GeV favourable for supersymmetric thermal leptogenesis is disallowed. On the other hand, PeV scale remains a viable option, and the results warrant a more detailed study of such models for their observability in collider and astroparticle experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Okumura, EPJ Web Conf. 126, 02023 (2016)

    Article  Google Scholar 

  2. Super-Kamiokande Collaboration: Y Fukuda et al, Phys. Rev. Lett. 81, 1562 (1998)

  3. R Davis, B T Cleveland and J K Rowley, AIP Conf. Proc. 123, 1037 (1984)

    Article  ADS  Google Scholar 

  4. SNO Collaboration: Q R Ahmed et al, Phys. Rev. Lett. 89, 011301 (2002) J N Bahcall and C Pena-Garay, arXiv:hep-ph/0404061

  5. A B McDonald, Ann. Phys. 528, 469 (2016)

    Article  Google Scholar 

  6. Z Poh and S Raby, Phys. Rev. D 92, 015017 (2015)

    Article  ADS  Google Scholar 

  7. C S Aulakh and A Girdhar, Int. J. Mod. Phys. A 20, 865 (2005)

    Article  ADS  Google Scholar 

  8. C S Aulakh and A Girdhar, Nucl. Phys. B 711, 275 (2005)

    Article  ADS  Google Scholar 

  9. K Lane and L Pritchett, arXiv:1604.07085 [hep-ph]

  10. R K Kaul, Rev. Mod. Phys. 55, 449 (1983)

    Article  ADS  Google Scholar 

  11. C Csaki, J Hubisz, G D Kribs, P Meade and J Terning, Phys. Rev. D 68, 035009 (2003)

    Article  ADS  Google Scholar 

  12. D E Kaplan and M Schmaltz, J. High Energy Phys. 0310, 039 (2003)

    Article  ADS  Google Scholar 

  13. N Arkani-Hamed, A G Cohen, E Katz, A E Nelson, T Gregoire and J G Wacker, J. High Energy Phys. 0208, 021 (2002)

    Article  ADS  Google Scholar 

  14. V A Kuzmin, V A Rubakov and M E Shaposhnikov, Phys. Lett. B 155, 36 (1985) P A Arnold and L McLerran, Phys. Rev. D 36, 581 (1987); Phys. Rev. D 36, 1020 (1988) J Ambjorn, T Askgaard, H Porter and M E Shaposhnikov, Phys. Lett. B 244, 479 (1990); Nucl. Phys. B 353, 346 (1991)

  15. M Joyce, T Prokopec and N Turok, Phys. Rev. Lett. 75, 1695 (1995); Erratum, ibid. 75, 3375 (1995) J Cline, M Joyce and K Kainulainen, Phys. Lett. B 417, 79 (1998) J Cline and K Kainulainen, Phys. Rev. Lett. 85, 5519 (2000)

  16. M Fukugita and T Yanagida, Phys. Lett. B 174, 45 (1986) M A Luty, Phys. Rev. D 45, 455 (1992) M Plumacher, Z. Phys. C 74, 549 (1997)

  17. S Davidson and A Ibarra, Phys. Lett. B 535, 25 (2002) W Buchmuller, P Di Bari and M Plumacher, Nucl. Phys. B 643, 367 (2002) S Antusch and S F King, Phys. Lett. B 597, 199 (2004) N Sahu and S Uma Sankar, Phys. Rev. D 71, 013006 (2005)

  18. M A Luty, Phys. Rev. D 45, 455 (1992) M Plumacher, Z. Phys. C 74, 549 (1997) W Buchmuller, P Di Bari and M Plumacher, Nucl. Phys. B 643, 367 (2002) G F Giudice, A Notari, M Raidal, A Riotto and A Strumia, Nucl. Phys. B 685, 89 (2004)

  19. N Sahu and U A Yajnik, Phys. Rev. D 71, 023507 (2005)

    Article  ADS  Google Scholar 

  20. M Gell-Mann, P Ramond and R Slansky, Conf. Proc. C 790927, 315 (1979), arXiv:1306.4669 [hep-th]

    Google Scholar 

  21. T Yanagida, Conf. Proc. C 7902131, 95 (1979)

    Google Scholar 

  22. R N Mohapatra and G Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  23. J Schechter and J W F Valle, Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  24. J Schechter and J W F Valle, Phys. Rev. D 25, 774 (1982)

    Article  ADS  Google Scholar 

  25. J C Pati and A Salam, Phys. Rev. D 10, 275 (1974) R N Mohapatra and J C Pati, Phys. Rev. D 11, 566 (1975); Phys. Rev. D 11, 2558 (1975) R N Mohapatra and G Senjanovic, Phys. Rev. D 12, 1502 (1975)

  26. H Davoudiasl and Y Zhang, Phys. Rev. D 92, 016005 (2015)

    Article  ADS  Google Scholar 

  27. P S B Dev and R N Mohapatra, Phys. Rev. D 92, 016007 (2015)

    Article  ADS  Google Scholar 

  28. M Chala, G Nardini and I Sobolev, Phys. Rev. D 94, 055006 (2016)

    Article  ADS  Google Scholar 

  29. L Covi, J E Kim, B Kyae and S Nam, Phys. Rev. D 94, 065004 (2016)

    Article  ADS  Google Scholar 

  30. D Zhuridov, Phys. Rev. D 94, 035007 (2016)

    Article  ADS  Google Scholar 

  31. F P Huang, P H Gu, P F Yin, Z H Yu and X Zhang, Phys. Rev. D 93, 103515 (2016)

    Article  ADS  Google Scholar 

  32. M Dhuria, C Hati and U Sarkar, Phys. Lett. B 756, 376 (2016)

    Article  ADS  Google Scholar 

  33. F F Deppisch, J Harz, M Hirsch, W C Huang and H Ps, Phys. Rev. D 92, 036005 (2015)

    Article  ADS  Google Scholar 

  34. F P Huang, Y Wan, D G Wang, Y F Cai and X Zhang, Phys. Rev. D 94, 041702 (2016)

    Article  ADS  Google Scholar 

  35. NNbar Collaboration: M J Frost, arXiv:1607.07271 [hep-ph]

  36. W Dekens, J de Vries, J Bsaisou, W Bernreuther, C Hanhart, U G Meiner, A Nogga and A Wirzba, J. High Energy Phys. 1407, 069 (2014)

    Article  ADS  Google Scholar 

  37. V Cirigliano, W Dekens, J de Vries and E Mereghetti, Phys. Lett. B 767, 1 (2017)

    Article  ADS  Google Scholar 

  38. M Drewes and S Eijima, arXiv:1606.06221 [hep-ph]

  39. T Asaka, S Eijima and H Ishida, Phys. Lett. B 762, 371 (2016)

    Article  ADS  Google Scholar 

  40. SHiP Collaboration: M De Serio, J. Phys. Conf. Ser. 718, 062015 (2016)

  41. ILC Collaboration: G Aarons et al, arXiv:0709.1893 [hep-ph]

  42. A Pilaftsis and T E J Underwood, Phys. Rev. D 72, 113001 (2005)

    Article  ADS  Google Scholar 

  43. P S Bhupal Dev, P Millington, A Pilaftsis and D Teresi, Nucl. Part. Phys. Proc. 273–275, 268 (2016)

    Google Scholar 

  44. I Affleck and M Dine, Nucl. Phys. B 249, 361 (1985)

    Article  ADS  Google Scholar 

  45. R Allahverdi, M Cicoli and F Muia, J. High Energy Phys. 1606, 153 (2016)

    Article  ADS  Google Scholar 

  46. J M Cline, U A Yajnik, S N Nayak and M Rabikumar, Phys. Rev. D 66, 065001 (2002)

    Article  ADS  Google Scholar 

  47. A Sarkar, Abhishek and U A Yajnik, Nucl. Phys. B 800, 253 (2008), arXiv: 0710.5410

  48. R N Mohapatra and R E Marshak, Phys. Rev. Lett. 44, 1316 (1980)

    Article  ADS  Google Scholar 

  49. R Kuchimanchi and R N Mohapatra, Phys. Rev. D 48, 4352 (1993)

    Article  ADS  Google Scholar 

  50. R Kuchimanchi and R N Mohapatra, Phys. Rev. Lett. 75, 3989 (1995)

    Article  ADS  Google Scholar 

  51. C S Aulakh, K Benakli and G Senjanovic, Phys. Rev. Lett. 79, 2188 (1997)

    Article  ADS  Google Scholar 

  52. C S Aulakh, A Melfo, A Rasin and G Senjanovic, Phys. Rev. D 58, 115007 (1998)

    Article  ADS  Google Scholar 

  53. C S Aulakh, A Melfo and G Senjanovic, Phys. Rev. D 57, 4174 (1998)

    Article  ADS  Google Scholar 

  54. N Sahu and U A Yajnik, Phys. Rev. D 71, 023507 (2005)

    Article  ADS  Google Scholar 

  55. K S Babu and R N Mohapatra, Phys. Lett. B 668, 404 (2008), arXiv: 0807.0481

    Article  ADS  Google Scholar 

  56. T W B Kibble, Phys. Rep. 67, 183 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  57. M Kawasaki and F Takahashi, Phys. Lett. B 618, 1 (2005)

    Article  ADS  Google Scholar 

  58. S Mishra and U A Yajnik, Phys. Rev. D 81, 045010 (2010)

    Article  ADS  Google Scholar 

  59. B Rai and G Senjanovic, Phys. Rev. D 49, 2729 (1994)

    Article  ADS  Google Scholar 

  60. J Preskill, S P Trivedi, F Wilczek and M B Wise, Nucl. Phys. B 363, 207 (1991)

    Article  ADS  Google Scholar 

  61. A Sarkar and U A Yajnik, Phys. Rev. D 76, 025001 (2007)

    Article  ADS  Google Scholar 

  62. S Mishra, U A Yajnik and A Sarkar, Phys. Rev. D 79, 065038 (2009)

    Article  ADS  Google Scholar 

  63. S L Dubovsky, D S Gorbunov and S V Troitsky, Phys. Usp. 42, 623 (1999)

    Article  ADS  Google Scholar 

  64. S Knapen and D Redigolo, arXiv:1606.07501 [hep-ph]

  65. B C Allanach, M Badziak, G Cottin, N Desai, C Hugonie and R Ziegler, Eur. Phys. J. C 76, 482 (2016)

    Article  ADS  Google Scholar 

  66. A E Nelson and N Seiberg, Nucl. Phys. B 416, 46 (1994)

    Article  ADS  Google Scholar 

  67. N Seiberg, Nucl. Phys. B 435, 129 (1995)

    Article  ADS  Google Scholar 

  68. K A Intriligator, N Seiberg and D Shih, J. High Energy Phys. 0604, 021 (2006),

    Article  ADS  Google Scholar 

  69. K A Intriligator, N Seiberg and D Shih, J. High Energy Phys. 0707, 017 (2007)

    Article  ADS  Google Scholar 

  70. N Haba and H Ohki, J. High Energy Phys. 1108, 021 (2011)

    Article  ADS  Google Scholar 

  71. D Borah and U A Yajnik, J. High Energy Phys. 1112, 072 (2011)

    Article  ADS  Google Scholar 

  72. J Kopp, M Lindner, V Niro and T E J Underwood, Phys. Rev. D 81, 025008 (2010)

    Article  ADS  Google Scholar 

  73. D Borah and U A Yajnik, Phys. Rev. D 83, 095004 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This is a comprehensive resume of the work done jointly with Narendra Sahu, Anjishnu Sarkar, Sasmita Mishra and Debasish Borah. It is a happy duty to thank the collaborators. The coverage of other works along similar lines suffers from the limitation of space permitted here as also from limitation of the author’s awareness of them. Most of the work was supported by grants from Department of Science and Technology. The author would like to thank the organizers of the Pheno1 Conference, IISER Mohali and the organizers and participants of the program Exploring the Energy Ladder of the Universe for enabling presentation and discussion of this work. The author would like to express special thanks to the Mainz Institute for Theoretical Physics (MITP) for its hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urjit A Yajnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yajnik, U.A. Why PeV scale left–right symmetry is a good thing. Pramana - J Phys 89, 59 (2017). https://doi.org/10.1007/s12043-017-1461-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1461-5

Keywords

PACS Nos

Navigation