Skip to main content
Log in

Efficient schemes for deterministic joint remote preparation of an arbitrary four-qubit W-type entangled state

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present three schemes for the joint remote state preparation (JRSP) of an arbitrary four-qubit W-type entangled state with complex coefficients via four and two three-qubit GHZ states as the quantum channel. In these schemes, two senders (or N senders) share the original state which they wish to help the receiver to remotely prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two senders (or N senders) collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubits, the receiver can reconstruct the original state by means of some appropriate unitary operations. It is shown that, in all our schemes, the total success probability of the JRSP can reach 1. Specially, compared with the first scheme in our paper, the entanglement resource in the second scheme can be reduced. This means that the scheme is more efficient and economical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M A Nielsen and I J Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. C H Bennett, G Brassard, C Crépeau, R Jozsa, A Peres and W K Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. K H Lo, Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  4. A K Pati, Phys. Rev. A  63, 014302 (2000)

    Article  ADS  Google Scholar 

  5. C H Bennett, D P Divincenzo, P W Shor, J A Smolin, B M Terhal and W K Wootters, Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  6. I Devetak and T Berger, Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  7. B Zeng and P Zhang, Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  8. D W Berry and B C Sanders, Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  9. A Abeyesinghe and P Hayden, Phys. Rev. A 68, 062319 (2003)

    Article  ADS  Google Scholar 

  10. D W Leung and P W Shor, Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  11. M G A Paris, M Cola and R Bonifacio, J. Opt. B: Quantum Semiclass. Opt. 5, S360 (2002)

    Article  Google Scholar 

  12. A Hayashi, T Hashimoto and M Horibe, Phys. Rev. A 67, 052302 (2003)

    Article  ADS  Google Scholar 

  13. M Y Ye, Y S Zhang and G C Guo, Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  14. Z Kurucz, P Adam, Z Kis and J Janszky, Phys. Rev. A 72, 052315 (2005)

    Article  ADS  Google Scholar 

  15. J M Liu, X L Feng and C H Oh, Europhys. Lett. 87, 30006 (2009)

    Article  ADS  Google Scholar 

  16. P C Ma and Y B Zhan, Opt. Commun. 283, 2640 (2010)

    Article  ADS  Google Scholar 

  17. M X Luo, X B Chen, S Y Ma, Y X Yang and Z M Hu, J. Phys. B: At. Mol. Opt. Phys. 43, 065501 (2010)

    Article  ADS  Google Scholar 

  18. W Wu, W T Liu, P X Chen and C Z Li, Phys. Rev. A 81, 042301 (2010)

    Article  ADS  Google Scholar 

  19. Q Q Chen, Y Xia, J Song and N B An, Phys. Lett. A 374, 4483 (2010)

    Article  ADS  Google Scholar 

  20. Y B Zhan, Europhys. Lett. 98, 40005 (2012)

    Article  ADS  Google Scholar 

  21. Y B Zhan, H Fu, X W Li and P C Ma, Int. J. Theor. Phys. 52, 2615 (2013)

    Article  Google Scholar 

  22. H Y Dai, M Zhang, Z R Zhang and Z R Xi, Commun. Theor. Phys. 60, 313 (2013)

    Article  ADS  Google Scholar 

  23. X H Peng, X W Zhu, X M Fang, M Feng, M L Liu and K L Gao, Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  24. S A Babichev, B Brezger and A I Lvovsky, Phys. Rev. Lett. 92, 047903 (2004)

    Article  ADS  Google Scholar 

  25. G Y Xiang, J Li, B Yu and G C Guo, Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  26. N A Peters, J T Barreiro, M E Goggin, T C Wei and P G Kwiat, Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  27. W Rosenfeld, S Berner, J Volz, M Weber and H Weinfurter, Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  28. X W Zha and H Y Song, Phys. Scr. 84, 015010 (2011)

    Article  ADS  Google Scholar 

  29. K Hou, J Y Yu and F Yan, Int. J. Theor. Phys. 54, 3092 (2015)

    Article  Google Scholar 

  30. D Wang, Y D Hu, Z Q Wang and L Ye, Quantum Inf. Process. 14, 2135 (2015)

    Article  ADS  Google Scholar 

  31. Y Xia, J Song and H S Song, J. Phys. B: At. Mol. Opt. Phys. 40, 3719 (2007)

    Article  ADS  Google Scholar 

  32. N B An and J Kim, J. Phys. B: At. Mol. Opt. Phys. 41, 125501 (2008)

    Article  Google Scholar 

  33. N B An and J Kim, Int. J. Quantum. Inf. 6, 1051 (2008)

    Article  Google Scholar 

  34. N B An, J. Phys. B: At. Mol. Opt. Phys. 42, 125501 (2009)

    Article  ADS  Google Scholar 

  35. N B An, Opt. Commun. 283, 4113 (2010)

    Article  ADS  Google Scholar 

  36. M X Luo, X B Chen, S Y Ma, X X Niu and Y X Yang, Opt. Commun. 283, 4796 (2010)

    Article  ADS  Google Scholar 

  37. Y B Zhan, B L Hu and P C Ma, J. Phys. B: At. Mol. Opt. Phys. 44, 095501 (2011)

    Article  ADS  Google Scholar 

  38. K Hou, Y B Li, G H Liu and S Q Sheng, J. Phys. A: Math. Theor. 44, 255304 (2011)

    Article  ADS  Google Scholar 

  39. D Wang, X W Zha and Q Lan, Opt. Commun. 284, 5853 (2011)

    Article  ADS  Google Scholar 

  40. J Li and H Y Zheng, Chin. Phys. C 36, 597 (2012)

    Article  ADS  Google Scholar 

  41. K Y Yang and Y Xia, Int. J. Theor. Phys. 51, 1647 (2012)

    Article  Google Scholar 

  42. Q Q Chen, Y Xia and J Song, J. Phys. A 45, 055303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  43. Y Wang and X Ji, Chin. Phys. B 22, 020306 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. H Li, Y Ping, X Pan, M Luo and Z Zhang, Int. J. Theor. Phys. 52, 4265 (2013)

    Article  Google Scholar 

  45. M X Luo, J Y Peng and Z W Mo, Int. J. Theor. Phys. 52, 644 (2013)

    Article  Google Scholar 

  46. M Jiang and F Jiang, Phys. Lett. A 377, 2524 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  47. B S Choudhury and A Dhara, Quant. Inf. Process. 14, 373 (2015)

    Article  ADS  Google Scholar 

  48. Q Q Chen and Y Xia, Laser Phys. 26, 015203 (2016)

    Article  ADS  Google Scholar 

  49. M Hillery, V Bu\(\check{\rm z}\)ek and A Bertiaume, Phys. Rev. A 59, 1829 (1999)

  50. R Clere, D Gottesman and H K Lo, Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  51. A M Lance, T Symul, W P Bowen, B C Sanders and P K Lam, Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos 11547023, 11174101, 11074088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Ma, PC., Chen, GB. et al. Efficient schemes for deterministic joint remote preparation of an arbitrary four-qubit W-type entangled state. Pramana - J Phys 88, 92 (2017). https://doi.org/10.1007/s12043-017-1413-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1413-0

Keywords

PACS Nos

Navigation