Skip to main content
Log in

Dynamics of Bianchi type-VI0 holographic dark energy models in general relativity and Lyra’s geometry

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we have studied the anisotropic and homogeneous Bianchi type-VI 0 Universe filled with dark matter and holographic dark energy components in the framework of general relativity and Lyra’s geometry. The Einstein’s field equations have been solved exactly by taking the expansion scalar (𝜃) in the model is proportional to the shear scalar (σ). Some physical and kinematical properties of the models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A G Riess et al, Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. C Fedli, L Moscardini, and M Bertelmann, Astron. Astrophys. 500, 667 (2009)

    Article  ADS  Google Scholar 

  4. R R Caldwell and M Doran, Phys. Rev. D 69, 103517 (2004)

  5. Z-Yi Huang et al, J. Cosmol. Astropart. Phys. 05, 013 (2006)

    Article  ADS  Google Scholar 

  6. A Einstein, Ann. Phys. 354, 769 (1916)

    Article  Google Scholar 

  7. H Weyl, Math. Z. 2, 384 (1918)

    Article  MathSciNet  Google Scholar 

  8. G Lyra, Math. Z. 54, 52 (1951)

    Article  MathSciNet  Google Scholar 

  9. D K Sen, Z. Phys. C 149, 311 (1957)

    Google Scholar 

  10. W D Halford, Austr. J. Phys. 23, 863 (1970)

    Article  ADS  Google Scholar 

  11. W D Halford, J. Math. Phys. 13, 1699 (1972)

    Article  ADS  Google Scholar 

  12. S D Katore et al, Prespacetime J. 3, 83 (2012)

    Google Scholar 

  13. H R Ghate and A S Sontakke, Prespacetime J. 5, 619 (2013)

    Google Scholar 

  14. A Asgar and M Ansari, The African Rev. Phys. 9, 0019 (2014)

    Google Scholar 

  15. A Asgar and M Ansari, IOSR J. Appl. Phys. (IOSR-JAP) 5, 1 (2015)

    Article  Google Scholar 

  16. K Das and G Sharma, Prespacetime J. 5, 494 (2014)

    Google Scholar 

  17. M V SubbaRao, Astrophys. Space Sci. 356, 149 (2015)

    Article  ADS  Google Scholar 

  18. S K Sahu et al, Int. J. Theor. Phys. 54, 807 (2015)

    Article  Google Scholar 

  19. M Li, Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  20. L N Granda and A Oliveros, Phys. Lett. B 669, 275 (2008)

    Article  ADS  Google Scholar 

  21. L N Granda and A Oliveros, Phys. Lett. B 671, 199 (2009)

    Article  ADS  Google Scholar 

  22. S Chattopadhyay and U Debnath, Astrophys. Space Sci. 319, 183 (2009)

    Article  ADS  Google Scholar 

  23. H Farajollahi, J Sadeghi, and M Pourali, Astrophys. Space Sci. 341, 695 (2012)

    Article  ADS  Google Scholar 

  24. U Debnath, Astrophys. Space Sci. 337, 503 (2012)

    Article  ADS  Google Scholar 

  25. M Malekjani, Astrophys. Space Sci. 347, 405 (2013)

    Article  ADS  Google Scholar 

  26. S Sarkar, Int. J. Theor. Phys. 52, 1482 (2013)

    Article  Google Scholar 

  27. S Sarkar, Astrophys. Space Sci. 349, 985 (2014)

    Article  ADS  Google Scholar 

  28. M Kiran, D R K Reddy, and V M U Rao, Astrophys. Space Sci. 354, 577 (2014)

    Article  ADS  Google Scholar 

  29. M Kiran, D R K Reddy, and V M U Rao, Astrophys. Space Sci. 356, 407 (2015)

    Article  ADS  Google Scholar 

  30. V M U Rao, M Vijaya Santhi, and N Sandhya Rani, Prespacetime J. 6, 226 (2014)

    Google Scholar 

  31. K S Adhav, S L Munde, G B Tayade, and V D Bokey, Astrophys. Space Sci. 359, 24 (2015)

    Article  ADS  Google Scholar 

  32. V U M Rao, M Vijaya Santhi, and N Sandhya Rani, Prespacetime J. 6, 961 (2015)

    Google Scholar 

  33. K S Thorne, Astrophys. J. 148, 51 (1967)

    Article  ADS  Google Scholar 

  34. C B Collins, E N Glass, and D A Wilkinson, Gen. Relativ. Gravit. 12, 805 (1980)

    Article  ADS  Google Scholar 

  35. A G Riess et al, Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  36. J L Torny et al, Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  37. A Clocchiatti et al, Astrophys. J. 642, 1 (2006)

    Article  ADS  Google Scholar 

  38. E Komatsu et al, Astrophys. J. Suppl. Ser. 180, 330 (2009)

    Article  ADS  Google Scholar 

  39. M A H MacCallum, Comput. Math. Phys. 20, 57 (1971)

    Article  ADS  Google Scholar 

  40. S Perlmutter et al, Astrophys. J. 483, 565 (1997)

    Article  ADS  Google Scholar 

  41. S Perlmutter et al, Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D V KAPSE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KATORE, S.D., KAPSE, D.V. Dynamics of Bianchi type-VI0 holographic dark energy models in general relativity and Lyra’s geometry. Pramana - J Phys 88, 30 (2017). https://doi.org/10.1007/s12043-016-1338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1338-z

Keywords

PACS Nos

Navigation