Skip to main content
Log in

Tunable plasmonic filter with circular metal–insulator– metal ring resonator containing double narrow gaps

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Tunable filter based on two metal–insulator–metal (MIM) waveguides coupled to each other by a ring resonator with double narrow gaps is designed and numerically investigated by finite-difference time-domain (FDTD) simulations. The propagating modes of surface plasmon polaritons (SPPs) are studied. By introducing narrow gaps in ring resonators, the transmission in different resonance modes can be effectively adjusted by changing the gap width (g), and the transmitted peak wavelength has a nonlinear relationship with g. Another structure consisting two cascading ring resonators and regular MIM waveguide have also been proposed. The mechanism based on circular ring resonators with narrow gaps may provide a novel method for designing all-optical integrated components in optical communication and computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. W L Barnes, A Dereux and T W Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  2. O Ekmel, Science 311, 189 (2006)

    Article  Google Scholar 

  3. S I Bozhevolnyi, V S Volkov, E Devaux and T W Ebbesen, Phys. Rev. Lett. 95, 046802 (2005)

    Article  ADS  Google Scholar 

  4. A V Zayats, I I Smolyaninov and A A Maradudin, Phys. Rep. 408, 131 (2005)

    Article  ADS  Google Scholar 

  5. E Verhagen, J A Dionne, L Kuipers, H A Atwater and A Polman, Nano Lett. 8, 2925 (2008)

    Article  ADS  Google Scholar 

  6. J A Dionne, L A Sweatlock, H A Atwater and A Polman, Phys. Rev. B 73, 035407 (2006)

    Article  ADS  Google Scholar 

  7. Y Guo, L Yan, W Pan, B Luo, K Wen, Z Guo, H Li and X Luo, Opt. Express 19, 13831 (2011)

    Article  ADS  Google Scholar 

  8. C Y Tai, S H Chang and T Chiu, IEEE Photo. Technol. Lett. 19, 1448 (2007)

    Article  ADS  Google Scholar 

  9. J H Zhu, X G Huang and X Mei, IEEE Trans. Nanotechnol. 10, 1166 (2011)

    Article  ADS  Google Scholar 

  10. S Xiao, L Liu and M Qiu, Opt. Express 14, 2932 (2006)

    Article  ADS  Google Scholar 

  11. A Hosseini and Y Massoud, Appl. Phys. Lett. 90, 181102 (2007)

    Article  ADS  Google Scholar 

  12. A Noual, A Akjouj, Y Pennec, J N Gillet and B Djafari-Rouhani, New J. Phys. 11, 103020 (2009)

    Article  ADS  Google Scholar 

  13. F Hu and Z Zhou, J. Opt. Soc. Am. B 28, 2518 (2011)

    Article  ADS  Google Scholar 

  14. H Lu, X M Liu, L R Wang, D Mao and Y K Gong, Appl. Phys. B 103, 877 (2011)

    Article  ADS  Google Scholar 

  15. K Wen, L Yan, W Pan, B Luo, Z Guo and Y Gu, J. Opt. 14, 075001 (2012)

    Article  ADS  Google Scholar 

  16. C Min and G Veronis, Opt. Express 17, 10757 (2009)

    Article  ADS  Google Scholar 

  17. A Dolatabady and N Granpayeh, J. Opt. Soc. Korea 16, 432 (2012)

    Article  Google Scholar 

  18. T B Wang, X W Wen, C P Yin and H Z Wang, Opt. Express 17, 24096 (2009)

    Article  ADS  Google Scholar 

  19. X Lin and X Huang, Opt. Express 33, 2874 (2008)

    Google Scholar 

  20. P H Lee and Y C Lan, Plasmonics 5, 417 (2010)

    Article  Google Scholar 

  21. Q Li, T Wang, Y Su, M Yan and M Qiu, Opt. Express 18, 8367 (2010)

    Article  ADS  Google Scholar 

  22. H Lu, X Liu, D Mao, L Wang and Y Gong, Opt. Express 18, 17922 (2010)

    Article  ADS  Google Scholar 

  23. Y Hwang, J E Kim, H Y Park and C S Kee, J. Opt. 13, 075006 (2011)

    Article  ADS  Google Scholar 

  24. R D Roy, R Chattopadhyay and S K Bhadr, Photo. Res. 1, 164 (2013)

    Article  Google Scholar 

  25. G G Zheng, Y Y Chen, L H Xu, M Lai and Y Z Liu, Opt. Commun. 305, 164 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos 61203211, 11304157) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 13KJB140006). The authors would especially like to thank Dr Xu Yi from Guangzhou University and Dr Wei Su for their useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GAIGE ZHENG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHENG, G., XU, L. & LIU, Y. Tunable plasmonic filter with circular metal–insulator– metal ring resonator containing double narrow gaps. Pramana - J Phys 86, 1091–1097 (2016). https://doi.org/10.1007/s12043-015-1127-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-1127-0

Keywords

PACS Nos

Navigation