Skip to main content
Log in

Analytic methods to generate integrable mappings

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Systematic analytic methods of deriving integrable mappings from integrable nonlinear ordinary differential, differential-difference and lattice equations are presented. More specifically, we explain how to derive integrable mappings through four different techniques namely, (i) discretization technique, (ii) Lax pair approach, (iii) periodic reduction of integrable nonlinear partial difference equations and (iv) construction of sufficient number of integrals of motion. The applicability of methods have been illustrated through Ricatti equation, a scalar second-order nonlinear ordinary differential equation with cubic nonlinearity, 2- and 3-coupled second-order nonlinear ordinary differential equations with cubic nonlinearity, lattice equations of Korteweg–de Vries, modified Korteweg–deVries and sine-Gordon types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Lakshmanan and R Sahadevan, Phys. Rep. 224, 1 (1993)

  2. V G Papageorgiou, F W Nijhoff and H W Capel, Phys. Lett. A 147, 106 (1990)

  3. G R W Quispel, H W Capel, V G Papageorgiou and F W Nijhoff, Physica A 173, 243 (1991)

  4. G R W Quispel, J A G Roberts and C J Thompson, Phys. Lett. A 126, 419 (1988)

  5. M J Ablowitz and P A Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, Cambridge, 1991)

  6. M J Ablowitz and J F Ladik, J. Math. Phys. 17, 1011 (1976)

  7. M J Ablowitz, Y Ohta and A D Trubatch, Phys. Lett. A 253, 287 (1999)

  8. B Grammaticos, Y Kosmann-Schwarzbach and T Tamizhmani (eds), Discrete integrable systems (Springer, Berlin, 2004)

  9. P G Kevrekidis, Physica D 183, 68 (2003)

  10. M Lakshmanan and S Rajasekar, Nonlinear dynamics: Integrability, chaos and patterns (Springer, Berlin, 2003)

  11. H W Capel, F W Nijhoff and V G Papageorgiou, Phys. Lett. A 155, 377 (1991)

  12. H W Capel and R Sahadevan, Physica A 289, 86 (2001)

  13. B Grammaticos, A Ramani and V Papageorgiou, Phys. Rev. Lett. 67, 1825 (1991)

  14. J Hietarinta and C Viallet, Phys. Rev. Lett. 81, 325 (1998)

  15. A Iatrou, Three dimensional integrable mappings, arXiv: nlin0306052 (2003)

  16. Yu B Suris, Funct. Anal. Appl. 23, 74 (1989)

  17. A P Veselov, Russ. Math. Surv. 46, 1 (1991)

  18. J A G Roberts and G R W Quispel, J. Phys. A: Math. Gen. 39, L605 (2006)

  19. R Sahadevan and C Uma Maheswari, J. Nonlinear Math. Phys. 15, 299 (2008)

  20. R Sahadevan and C Uma Maheswari, J. Phys. A: Math. Theor. 42, 454017 (2009)

  21. M Bruschi, O Ragnisco, P M Santini and Tu GuiZhang, Physica D 49, 273 (1991)

  22. M P Bellon and C M Viallet, Commun. Math. Phys. 204, 425 (1999)

  23. S Lafortune and A Goriely, J. Math. Phys. 45, 1191 (2004)

  24. N Joshi, D Burtonclay and R G Halburd, Lett. Math. Phys. 26, 123 (1992)

  25. R Sahadevan and S Rajakumar, J. Math. Phys. 50, 043502 (2009)

  26. B Grammaticos, A Ramani and K M Thamizhmani, J. Phys. A: Math. Gen. 2, 559 (1994)

  27. G R W Quispel, J A G Roberts and C J Thompson, Physica D 34, 183 (1989)

  28. B Grammaticos, A Ramani, J Satsuma and R Willox, J. Math. Phys. 53, 023506 (2012)

  29. R Hirota, Difference analogs of nonlinear evolution equations in Hamiltonian form (1983) unpublished

  30. R Hirota, Direct methods in soliton theory, in: Solitons edited by R K Bullough and P J Caudrey (Springer, Berlin, 1980)

  31. R E Mickens (ed.), Advances in the applications of nonstandard finite difference schemes (World Scientific, Singapore, 2005)

  32. R E Mickens, Nonstandard finite difference models of differential equations (World Scientific, Singapore, 1994)

  33. M Murata, J Satsuma, A Ramani and B Grammaticos, J. Phys. A: Math. Theor. 43, 315203 (2010)

  34. E C McMillan, Topics in physics edited by W E Brittin and H Odabasi (Colorado University Press, Boulder, 1971)

  35. A Iatrou and J A G Roberts, J. Phys. A: Math. Gen. 34, 6617 (2001)

  36. A Iatrou, Physica D 179, 229 (2003)

Download references

Acknowledgement

This work forms part of the start-up grant given by UGC and DST PURSE grant given by University of Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R SAHADEVAN.

Appendix A

Appendix A

The entries of M 1(n,λ), M 2(n,λ), M 3(n,λ), M 4(n,λ), L 4(n) for mappings (29)–(34) are listed below. Mapping (29)

$$\begin{array}{@{}rcl@{}} && M_{1}(n,\lambda)=\frac{a_{1}x_{n+1}+a_{4}+(a_{1}x_{n+1}+a_{1})[x_{n}+x_{n+2}]+a_{1}x_{n}x_{n+1}x_{n+2}}{x_{n}x_{n+2}},\\ && M_{2}(n,\lambda)=\frac{1}{x_{n}},\quad L_{4}(n)=-M_{1}(n,\lambda)x_{n}x_{n+1} ,\\ && M_{3}(n,\lambda)=(\lambda +M_{1}(n,\lambda))x_{n},\\ && M_{4}(n,\lambda)\,=\,\frac{a_{1}x_{n}x_{n+2}\,+\,a_{1}x_{n}\,+\,a_{1}x_{n+2}\,+\,a_{1}\,+\,[a_{1}x_{n+2}\,+\,a_{5}x_{n}x_{n+2}\,+\,a_{1}x_{n}\,+\,1]x_{n+1}}{x_{n+1}}. \end{array} $$

Mapping (30)

$$\begin{array}{@{}rcl@{}} M_{1}(n,\lambda)&=&\frac{a_{4}x_{n+1}+a_{2}x_{n+1}^{2}+a_{2}x_{n+1}[x_{n}+x_{n+2}]}{x_{n}x_{n+2}},\\ M_{2}(n,\lambda)&=&\frac{1}{x_{n}},\quad L_{4}(n)=-M_{1}(n,\lambda)x_{n}x_{n+1} ,\\ &&M_{3}(n,\lambda)=(\lambda +M_{1}(n,\lambda))x_{n},\\ M_{4}(n,\lambda)&=&\frac{[a_{5}x_{n}x_{n+2}+a_{2}x_{n+2}+a_{2}x_{n}]x_{n+1}+a_{2}x_{n}x_{n+2}+x_{n+1}^{2}}{x_{n+1}^{2}}. \end{array} $$

Mapping (31)

$$\begin{array}{@{}rcl@{}} M_{1}(n,\lambda)&=&\frac{1}{2}t[a_{4}[x_{n}+x_{n+1}+x_{n+2}]+a_{2}[x_{n}+x_{n+2}]x_{n+1}\\&&+a_{3}x_{n}x_{n+2}+a_{1}x_{n}x_{n+1}x_{n+2}],\\ M_{2}(n,\lambda)&=&\frac{1}{x_{n}},\quad L_{4}(n)=-M_{1}(n,\lambda)x_{n}x_{n+1} ,\\ &&M_{3}(n,\lambda)=(\lambda +M_{1}(n,\lambda))x_{n},\quad M_{4}(n,\lambda)=M_{1}(n,\lambda)+1. \end{array} $$

Mapping (32)

$$\begin{array}{@{}rcl@{}} M_{1}(n,\lambda)&=&\frac{1}{2}\left[a_{4}x_{n}x_{n+1}+a_{4}x_{n+1}x_{n+2}+a_{3}x_{n}x_{n+1}x_{n+2}+a_{1}x_{n}x_{n+1}^{2}x_{n+2}\right]\\ M_{2}(n,\lambda)&=&\frac{1}{x_{n}},\quad L_{4}(n)=-M_{1}(n,\lambda)x_{n}x_{n+1} ,\\ &&M_{3}(n,\lambda)=(\lambda +M_{1}(n,\lambda))x_{n},\quad M_{4}(n,\lambda)= M_{1}(n,\lambda)+1. \end{array} $$

Mapping (33)

$$\begin{array}{@{}rcl@{}} M_{1}(n,\lambda)&=&\frac{1}{2}[a_{1}[(x_{n}+x_{n+1})x_{n+2}^{2}+{x_{n}^{2}}(x_{n+2}+x_{n+1})\\&&+2x_{n}x_{n+1}x_{n+2}-(x_{n+2}+x_{n})x_{n+1}^{2}]\\&&+a_{2}[(x_{n}+x_{n+1})x_{n+2}+(x_{n}-x_{n+1})x_{n+1})\\&&+a_{3}(x_{n}+x_{n+2}] +a_{4}[(x_{n+2}+x_{n}-x_{n+1}]x_{n}x_{n+1}x_{n+2})\\&&+a_{5}[{x_{n}^{2}}+x_{n+2}^{2}+x_{n+1}^{2}+x_{n}x_{n+2}-x_{n+1}x_{n+2}-x_{n}x_{n+1}]],\\ M_{2}(n,\lambda)&=&\frac{1}{x_{n}},\quad L_{4}(n)=-M_{1}(n,\lambda)x_{n}x_{n+1} ,\\ &&M_{3}(n,\lambda)=(\lambda +M_{1}(n,\lambda))x_{n},\quad M_{4}(n,\lambda)=M_{1}(n,\lambda)+1. \end{array} $$

Mapping (34)

$$\begin{array}{@{}rcl@{}} M_{1}(n,\lambda)&=&\frac{1}{2}[a_{1}[(x_{n}+x_{n+1})x_{n+2}^{2}+x_{n+1}^{2}(x_{n+2}+x_{n})\\&&+{x_{n}^{2}}(x_{n+1} +x_{n+2})+2x_{n}x_{n+1}x_{n+2}]\\ && +a_{2}[(x_{n}+x_{n+1})x_{n+2}+x_{n}x_{n+1}]\\&&+a_{3}[x_{n}+x_{n+1}+x_{n+2}] +a_{4}[{x_{n}^{2}}+x_{n+1}^{2}+x_{n+2}^{2}]], \\ M_{2}(n,\lambda)&=&\frac{1}{x_{n}},\quad L_{4}(n)=-M_{1}(n,\lambda)x_{n}x_{n+1} ,\\ &&M_{3}(n,\lambda)=(\lambda +M_{1}(n,\lambda))x_{n} , \quad M_{4}(n,\lambda)=M_{1}(n,\lambda)+1. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAHESWARI, C.U., SAHADEVAN, R. Analytic methods to generate integrable mappings. Pramana - J Phys 85, 807–821 (2015). https://doi.org/10.1007/s12043-015-1102-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-1102-9

Keywords

PACS No

Navigation