Skip to main content
Log in

Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Nonlinear Mach–Zehnder interferometer (NMZI) created with photonic crystal waveguides (PCW) and with Kerr-type nonlinearity has been investigated in this paper. The NMZI has been simulated using two-dimensional finite difference time domain (2D-FDTD) method. Input verses output (I /O) characteristics have been obtained for different lengths of the nonlinear arm, nonlinear coefficients of the nonlinear arm, wavelengths of the input beam, sizes of defect rods and NMZI offset. The results obtained are compared with earlier published results of NMZI created with conventional step index waveguides (SIW). It is shown that all useful features of light switching offered by SIW-based NMZIs are also possible with PCW-based NMZIs of extremely small dimensions. Moreover, PCW-based NMZIs offer additional useful feature not available with SIW-based NMZIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. A Srivastava and S Medhekar, Opt. Laser Technol. 43, 29 (2011)

    Article  ADS  Google Scholar 

  2. A Srivastava and S Medhekar, Opt. Laser Technol. 43, 1208 (2011)

    Article  ADS  Google Scholar 

  3. P B Hansen and A H Gnauck, IEEE Phot. Tech. Lett. 4, 592 (1992)

    Article  ADS  Google Scholar 

  4. N Yoshimoto, Y Shibata, S Oku, S Kondo and Y Noguchi, IEEE Phot. Tech. Lett. 10, 531 (1998)

    Article  ADS  Google Scholar 

  5. N Pleros, G T Kanellos, C Bintjas, A Hatziefremidis and H Avramopoulos, IEEE Phot. Tech. Lett. 16, 2350 (2004)

    Article  ADS  Google Scholar 

  6. A Srivastava, M M Gupta and S Medhekar, Opt. Laser Technol. 44, 492 (2011)

    Article  ADS  Google Scholar 

  7. T Yabu, M Geshiro, T Kitamura, K Nishida and S Sawa, IEEE J. Quant. Elec. 38, 37 (2002)

    Article  ADS  Google Scholar 

  8. S Medhekar and P P Paltani, Fib. Inte. Opt. 28, 229 (2009)

    Article  Google Scholar 

  9. S Medhekar and P P Paltani, Fib. Inte. Opt. 28, 268 (2009)

    Article  Google Scholar 

  10. S K Garai and S Mukhopadhyay, Opt. Laser Technol. 42, 1122 (2010)

    Article  ADS  Google Scholar 

  11. S G Johnson, P R Villeneuve, S Fan and J D Joannopoulos, Phys. Rev. B 62, 8212 (2000)

    Article  ADS  Google Scholar 

  12. J D Joannopoulos, P R Villeneuve and S Fan, Nature 386, 143 (1997)

    Article  ADS  Google Scholar 

  13. M F Yanik, S Fan, M Soljacic and J D Joannopoulos, Opt. Lett. 28, 2506 (2003)

    Article  ADS  Google Scholar 

  14. Z Wang and S Fan, Opt. Lett. 30, 1989 (2005)

    Article  ADS  Google Scholar 

  15. Y Qu, H Ren and C Jiang, IEEE Quant. Electron. 43, 974 (2007)

    Article  ADS  Google Scholar 

  16. Y Zhang, Y Zhang and B Li, Opt. Exp. 15, 9287 (2007)

    Article  ADS  Google Scholar 

  17. Z H Zhu, W M Ye, J R Ji, X D Yuan and C Zen, Opt. Exp. 14, 1783 (2006)

    Article  ADS  Google Scholar 

  18. H Zhou, K F Zhou, W Hu, Q Guo, S Lan, X S Lin and A V Gopal, J. Appl. Phys. 99, 123111 (2006)

    Article  ADS  Google Scholar 

  19. A Srivastava, P P Paltani and S Medhekar, Pramana – J. Phys. 74, 575 (2010)

    Article  ADS  Google Scholar 

  20. T Fujisawa and M Koshiba, J. Light. Technol. 24, 617 (2006)

    Article  ADS  Google Scholar 

  21. A Taflove and S C Hagness, Computational electrodynamics: The finite difference time-domain method, 3rd edn (Artech House, Norwood, MA, 2005) p. 53

  22. S T Chu and S K Chaudhuri, J. Lightwave Technol. 7, 2033 (1989)

    Article  ADS  Google Scholar 

  23. K S Yee, IEEE Trans. Antennas Prop. 14, 302 (1966)

    Article  ADS  MATH  Google Scholar 

  24. M Benavides, M Alvarez, C Calderón, J Sosa, M Galaz, M Rodriguez, M Enciso and C Marquez, Rev. Mex. Fis. E 57, 25 (2011)

    Google Scholar 

  25. J P Berenger, J. Comp. Phys. 127, 363 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. J P Berenger, J. Comp. Phys. 114, 185 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. K Okamoto, Fundamentals of optical waveguides (Academic Press, USA, 2002) p. 274

  28. D C Hutchings, IEEE J. Sele. Top. Quant. Elec. 10, 1124 (2004)

    Article  Google Scholar 

  29. M N Islam, C E Soccolich, R E Slusher, A F J Levi, W S Hobson and M G Young, J. Appl. Phys. 71, 1927 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge helpful discussions on photonic crystals with Dr Achanta Venugopal, Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai. Authors also acknowledge the anonymous reviewer for invaluable comments to improve the presentation. MMG acknowledges Birla Institute of Technology, Mesra, Ranchi, India for Institute fellowship during Oct. 2012-Sept. 2013. SM acknowledges funding from Department of Science & Technology (DST), India (SR /S2 /LOP-0025 /2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S MEDHEKAR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GUPTA, M.M., MEDHEKAR, S. Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry. Pramana - J Phys 82, 1061–1074 (2014). https://doi.org/10.1007/s12043-014-0705-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-014-0705-x

Keywords

PACS Nos

Navigation