Skip to main content
Log in

De novo genome assembly and annotation of gall-forming medicinal plant Pistacia chinensis subsp. integerrima (J. L. Stewart ex Brandis) Rech. f.

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Pistacia chinensis subsp. integerrima is one of the medicinal plants, well known for gall formation and popularly used in Ayurveda to treat various systemic diseases such as chronic disorders, respiratory problems, etc. P. integerrima genome characterization will aid in the study of Pistacia genes and pathways involved in therapeutic application. To understand the biological characteristics of this plant and to gain the genetic insight into the biosynthesis of its natural compounds, the whole genome of P. integerrima and its leaf transcriptome was sequenced using Illumina sequencing technology. The sequenced genome was functionally annotated, and gene prediction was performed with integrated genome annotation workflow. The pathway analysis was carried out using KEGG database. We obtained a draft genome assembly of 462 Mb with N50 16,145 bp. A total of 39,452 genes were found, and 18,492 of these contained RNA or protein evidence. We characterized the genes involved in biosynthetic pathways of different plant secondary metabolites such as flavonoids and terpenoids. Also, we identified miR397 and miR828 family noncoding RNA; which mainly targets the laccase (LCA) and MYB protein functioning respectively. Phylogeneic analysis showed that P. integerrima is genetically more closer to P. vera. In this study, we attempt to explore the whole genome information of P. integerrima which will provide a genomic insight in the future for omics studies as well as serves as valuable resource for the molecular characterization of medicinal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aggarwal B. B., Ichikawa H., Garodia P., Weerasinghe P., Sethi G., Bhatt I. D. et al. 2006 From traditional Ayurvedic medicine to modern medicine: Identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin. Ther. Targets 10, 87–118.

    Article  CAS  PubMed  Google Scholar 

  • Andrews S. 2010 FastQC: a quality control tool for high throughput sequence data (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

  • Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S. et al. 2012 SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao W., Kojima K. K. and Kohany O. 2015 Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barinder K. and Saurabh S. 2015 A review on gall karkatshringi. J. Med. Plants Res. 9, 636–640.

    Article  Google Scholar 

  • Basr I. H., Kafkas S. and Topaktas M. 2003 Chromosome numbers of four Pistacia (Anacardiaceae) species. J. Hortic. Sci. Biotechnol. 78, 35–38.

    Article  Google Scholar 

  • Bi Q., Zhao Y., Du W., Lu Y., Gui L., Zheng Z. et al. 2019 Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome. Gigascience 8, 1–11.

    Article  CAS  Google Scholar 

  • Bibi Y., Zia M. and Qayyum A. 2015 Review-An overview of Pistacia integerrima a medicinal plant species: Ethnobotany, biological activities and phytochemistry. Pak. J. Pharm. Sci. 28, 1009–1013.

    CAS  PubMed  Google Scholar 

  • Blanco E., Parra G. and Guigó R. 2007 Using geneid to Identify Genes. In Current protocols in bioinformatics. 4, unit 4.3.

  • Boeckmann B., Bairoch A., Apweiler R., Blatter M., Estreicher A., Gasteiger E. et al. 2003 The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boetzer M., Henkel C. V., Jansen H. J. and Butler D. 2011 Scaffolding pre-assembled contigs using SSPACE Summary. Bioinformatics (Oxford, England). 27, 578–579.

    Article  CAS  Google Scholar 

  • Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K. et al. 2009 BLAST+: architecture and applications. BMC Bioinformatics 9, 1–9.

    Google Scholar 

  • Chan P. and Lowe T. 2019 tRNAscan-SE: searching for tRNA genes. Gene Predict. 1962, 1–21.

    CAS  Google Scholar 

  • Chikhi R. and Medvedev P. 2014 Informed and automated k-mer size selection for genome assembly. Bioinformatics 30, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Chopra R. N., Nayar S. L. and Chopra I. 1986 Glossary of Indian medicinal plants (Including the Supplement). Council of Scientific and Industrial Research, New Delhi.

  • Ghaffari S. M., Shabazaz M. and Behboodi B. S. 2005 Chromosome variation in Pistacia genus. Options Mediterraneennes Serie A. 63, 347–354.

    Google Scholar 

  • Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I. et al. 2011 Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S., Bateman A., Marshall M., Khanna A. and Eddy S. R. 2003 Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas B. J., Delcher A. L., Mount S. M., Wortman Jr. J. R. et al. 2003 Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas B. J., Salzberg S. L., Zhu W., Pertea M., Allen J. E., Orvis J. et al. 2008 Automated eukaryotic gene structure annotation using evidence modeler and the program to assemble spliced alignments. Genome Biol. 9, 1–22.

    Article  Google Scholar 

  • Huang S., Zhou J., Gao L. and Tang Y. 2021 Plant miR397 and its functions. Funct. Plant Biol. 48, 361–370.

    Article  CAS  PubMed  Google Scholar 

  • Keilwagen J., Wenk M., Erickson J. L., Schattat M. H., Grau J. and Hartung F. 2016 Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kent W. J. 2002 BLAT - The BLAST -like alignment tool. Genome Res. 12, 656–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R. and Salzberg S. L. 2013 TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korf I. 2004 Gene finding in novel genomes. BMC Bioinformatics 9, 1–9.

    Google Scholar 

  • Krueger F. 2015 Trim galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).

  • Lechner M., Findeiß S., Steiner L., Marz M., Stadler P. F. and Prohaska S. J. 2011 Proteinortho: detection of (Co-) orthologs in large-scale analysis. BMC Bioinformatics 12, 124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C., Wang M., Qiu X., Zhou H. and Lu S. 2021 Noncoding RNAs in medicinal plants and their regulatory roles in bioactive compound production. Curr. Pharm. Biotechnol. 22, 341–359.

    Article  CAS  PubMed  Google Scholar 

  • Lu M., An H. and Li L. 2016 Genome survey sequencing for the characterization of the genetic background of rosa roxburghii tratt and leaf ascorbate metabolism genes. PLoS One 11, 1–17.

    Google Scholar 

  • Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J. et al. 2012 SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 1, 2047-217X-1-18.

  • Majoros W. H., Pertea M. and Salzberg S. L. 2004 TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics (Oxford, England) 20, 2878–2879.

    Article  CAS  Google Scholar 

  • Marçais G. and Kingsford C. 2011 A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 27, 764–770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G. A., Sonnhammer E. L. L. et al. 2021 Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419.

    Article  CAS  PubMed  Google Scholar 

  • Moriya Y., Itoh M., Okuda S., Yoshizawa A. C. and Kanehisa M. 2007 KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, 182–185.

    Article  Google Scholar 

  • Munir M., Khan M. A., Ahmed M., Bano A., Ahmed S. N., Tariq K. et al. 2011 Foliar epidermal anatomy of some ethnobotanically important species of wild edible fruits of northern Pakistan. J. Med. Plants Res. 5, 5873–5880.

    Google Scholar 

  • Nawrocki E. P. and Eddy S. R. 2013 Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novaes R. M. L., Rodrigues J. G. and Lovato M. B. 2009 An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. Genet. Mol. Res. 8, 86–96.

    Article  CAS  PubMed  Google Scholar 

  • Orwa C., Mutua A., Kindt R., Jamnadass R. and Simons A. 2009 Agroforestree database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya. (http://apps.worldagroforestry.org/treedb2/).

  • Pant S. and Samant S. S. 2010 Ethnobotanical observations in the mornaula reserve forest of Komoun, West Himalaya, India. Ethnobot. Leafl. 14, 193–217.

    Google Scholar 

  • Rauf A. 2019 A Mini Review on a Pistacia integerrima well-known medicinal plant: its active phytochemicals with exciting pharmacological profile. Act. Sci. Nutr. Health. 3, 45–48 .

    Google Scholar 

  • Rauf A., Saleem M., Uddin G., Siddiqui B. S., Khan H., Raza M. et al. 2015 Phosphodiesterase-1 Inhibitory Activity of Two Flavonoids Isolated from Pistacia integerrima J. L. Stewart Galls. Evid. Based Complement Alternat. Med. 2015, 506564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sima F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V. and Zdobnov E. M. 2015 Genome analysis BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212.

    Article  Google Scholar 

  • Stanke M. and Stephan W. 2003 Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics (Oxford, England). 19, 215–225.

    Article  Google Scholar 

  • Thiel T., Michalek W., Varshney R. K. and Graner A. 2003 Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Tirumalai V., Swetha C., Nair A., Pandit A. and Shivaprasad P. V. 2019 MiR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. J. Exp. Bot. 70, 4775–4791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C., Williams B. A., Pertea G., Mortazavi A., Kwan G., van Baren M. J. et al. 2010 Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 28, 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah Z., Mehmood R., Imran M., Malikb A. and Afzal R. A. 2012 Flavonoid constituents of Pistacia integerrima. Nat Prod Commun. 7, 1011–1014.

    CAS  PubMed  Google Scholar 

  • Vogt T. 2010 Phenylpropanoid biosynthesis. Mol. Plant 3, 2–20.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q., Quan S. and Xiao H. 2019 Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply. Bioresour. Bioprocess 6, 6.

    Article  CAS  Google Scholar 

  • Xu L., Dong Z., Fang L., Luo Y., Wei Z., Guo H. et al. 2019 OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, 52–58.

    Article  Google Scholar 

  • Zahoor M., Zafar R. and Rahman N. U. 2018 Isolation and identification of phenolic antioxidants from Pistacia integerrima gall and their anticholine esterase activities. Heliyon 4, e01007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y., Zheng L., Zheng Y., Zhou C., Huang P., Xiao X. et al. 2019 Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum. Front. Plant Sci. 10, 1274.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziya M. E., Kafkas S., Khodaeiaminjan M., Çoban N. and Gözel H. 2016 Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: development of novel SSR markers and genetic diversity in Pistacia species. BMC Genomics 17, 998.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Dr N. B. Brindavanam for his support at every stage in this study, right from inception; Bengaluru Genomics Centre for their support in sequencing and data analysis; Dabur India Ltd. and Dr Sasibhushan Vedula for the support at various strata.

Author information

Authors and Affiliations

Authors

Contributions

MG designed field experiments and data generation and analysis. PN and MG were involved in sample collection. NB and AB were involved in authentic sample collection. MG and PV was involved in initiating and heading the project. SNH was involved in data analysis, interpretation and drafting manuscript. MG, PN, SK, NB and PV were involved in editing the manuscript and providing inputs.

Corresponding authors

Correspondence to Malali Gowda or Pavithra Narendran.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, S.N., Begum, N., Bhatt, A. et al. De novo genome assembly and annotation of gall-forming medicinal plant Pistacia chinensis subsp. integerrima (J. L. Stewart ex Brandis) Rech. f.. J Genet 101, 51 (2022). https://doi.org/10.1007/s12041-022-01391-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-022-01391-w

Keywords

Navigation