Skip to main content
Log in

Dapagliflozin, a sodium glucose cotransporter 2 inhibitors, protects cardiovascular function in type-2 diabetic murine model

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Diabetes mellitus and its complications are major international health problems in which there are many limitations to the orthodox approaches in the treatment. Sodium glucose cotransporter 2 (SGLT2) inhibitors are a new class of diabetic medications, with a different mechanism of action that may reduce risk of cardiovascular complications. To evaluate the effect of SGLT2 inhibitor monotherapy on cardiovascular complications in patients with type-2 diabetes and to compare its effect with the first-line therapy, metformin. Eighty rats divided into four groups were used: nondiabetic, diabetic nontreated, diabetic + met and diabetic + dapa. At the end, the arterial blood pressure and cardiac performance were assessed. Glycemic index, lipid profile, total antioxidant capacity, malondialdehyde, tumour necrosis factor α were measured. DNA changes were assessed from the hearts and aortae. Aortic tissue changes recorded using haematoxylin and eosin, Masson trichrome and iNOS immune stain. Glycemic index, lipid profile, oxidative stress and inflammatory parameters were significantly improved in both metformin and dapagliflozin treated groups with significant improvement in blood pressure and cardiac performance. Also, there were noticeable significant reduction in DNA fragmentation in aortic and cardiac tissues and reduction in collagen deposition and iNOS expression in aortic tissue. Dapagliflozin treatment results’ significantly surpassed improvement of metformin treatment nearly in all parameters. Total genomic DNA extraction proved that SGL2 inhibitor (dapagliflozin) has superior glycemic control and cardiovascular protective effect over metformin especially in type-2 diabetes with high fat intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abraham E. C., Huff T. A., Cope N. D., Wilson Jr J. B., Bransome Jr E. D. and Huisman T. H. J. 1978 Determination of glycosylated hemoglobins (HbA1) with a new microcolumn procedure: suitability of the technique for assessing the clinical management of diabetes mellitus. Diabetes 27, 931–947.

    CAS  PubMed  Google Scholar 

  • Alfa R. W., Park S., Skelly K. R., Poffenberger G., Jain N. and Gu X. 2015 Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 21, 323–334.

    CAS  Google Scholar 

  • American Diabetes Association 2013 Diagnosis and classification of diabetes mellitus. Diabetes Care 36, 67–74.

    Google Scholar 

  • American Diabetes Association 2018 Cardiovascular disease and risk management. Standards of medical care in diabetes. Diabetes Care 41, 86–104.

    Google Scholar 

  • American Diabetes Association 2019 Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes. Diabetes Care 42, 90–102.

    Google Scholar 

  • Arow M., Waldman M., Yadin D., Nudelman V., Shainberg A., Abraham N. G. et al. 2020 Sodium–glucose cotransporter 2 inhibitor Dapaglifozin attenuates diabetic cardiomyopathy. Cardiovasc. Diabetol. 19, 7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bancroft J. D. and Stevens A. 1990 Theory and practice of histological techniques, 3rd edition, vol. 15, pp. 1276–1298. Churchill Livingstone, Edinburgh.

  • Boudina S., Sena S., O’Neill P. T., Tathireddy P., Young M. E. and Abel E. D. 2005 Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. J. Circ. 112, 2686–2695.

    Google Scholar 

  • Briasoulis A., Al Dhaybi O. and Bakris G. L. 2018 SGLT2 inhibitors and mechanisms of hypertension. J. Curr. Cardiol. Rep. 19, 20–40.

    Google Scholar 

  • Capellini V. K., Baldo C. F., Celotto A. C., Batalhão M. E., Cárnio E. C., Rodrigues A. J. et al. 2010 Oxidative stress is not associated with vascular dysfunction in a model of alloxan-induced diabetic rats. Arq. Bras. Endocrinol. Metab. 54, 530–539.

    Google Scholar 

  • Chang S. L., Lin K. J., Lin R. T., Hung P. H., Lin J. G. and Cheng J. T. 2006 Enhanced insulin sensitivity using electroacupuncture on bilateral Zusanli acupoints (ST 36) in rats. Life Sci. 79, 967–971.

    CAS  PubMed  Google Scholar 

  • Cheng Y. C., Sheen J. M., Hu W. L. and Hung Y. C. 2017 Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid. Med. Cell Longev. 8, 524–643.

    Google Scholar 

  • Cherney D. Z., Perkins B. A., Soleymanlou N., Har R., Fagan N., Johansen O. E. et al. 2014 The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc. Diabetol. 13, 28-47.

    PubMed  PubMed Central  Google Scholar 

  • DeFronzo R. A. 2017 Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor. Diabetes Obes. Metab. 19, 1353–1362.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dziuba J., Alperin P., Racketa J., Iloeje U., Goswami D., Hardy E. et al. 2014 Modeling effects of SGLT-2 inhibitor dapagliflozin treatment versus standard diabetes therapy on cardiovascular and microvascular outcomes. Diabetes Obes. Metab. 16, 628–635.

    CAS  PubMed  Google Scholar 

  • El-Garawani I. M. and Hassab El-Nabi S. E. 2016 Increased sensitivity of apoptosis detection using direct and staining method and integration of acridine orange as an alternative safer fluorescent dye in agarose gel electrophoresis and micronucleus test. Can. J. Appl. Sci. 10, 3865–3871.

    CAS  Google Scholar 

  • Feidantsis K., Mellidis K., Galatou E., Sinakos Z. and Lazou A. 2018 Treatment with crocin improves cardiac dysfunction by normalizing autophagy and inhibiting apoptosis in STZ-induced diabetic cardiomyopathy. Nutr. Metab. Cardiovasc. Dis. 28, 952–961.

    CAS  PubMed  Google Scholar 

  • Friedwald W. T., Levey R. I. and Fredriekson D. S. 1972 Estimation of the concentration of LDL-C without the use of preparative ultracentrifuge. Clin. Chem. 18, 499–502.

    Google Scholar 

  • Han S., Deborah L., Hagan B. S., Joseph R., Taylor B. S., Xin L. et al. 2008 Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes J. 57, 1723–1729.

    CAS  Google Scholar 

  • Hassab El-Nabi S. E. and Elhassaneen Y. A. 2008 Detection of DNA damage, molecular apoptosis and production of home-made ladder by using simple techniques. Biotechnol. J. 7, 514–522.

    Google Scholar 

  • Hassan A. N. 2013 Amelioration of some manifestations of metabolic syndrome in rats by allopurinol irrespective of lowering serum uric acid level: role of adiponectin. Egypt. J. Basic Clin. Pharmacol. 3, 83–94.

    Google Scholar 

  • Huynh K., Bernardo B. C., McMullen J. R. and Ritchie R. H. 2014 Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. J. Pharmacol. Ther. 142, 375–415.

    CAS  Google Scholar 

  • Joubert M., Jagu B., Montaigne D., Marechal X., Tesse A., Ayer A. et al. 2017 The sodium–glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes 66, 1030–1040.

    CAS  PubMed  Google Scholar 

  • Judzewitsch R. G., Pfeiffer M. A., Best J. D., Beard J. C., Halter G. and Porte D. 1982 Chronic chlorpropamide therapy of noninsulin dependent diabetes mellitus augments basal and stimulated. Clin. Endocrinol. Metab. 5, 321–328.

    Google Scholar 

  • Kalra S., Kesavadev J., Chadha M. and Kumar G. V. 2018 Sodium-glucose cotransporter-2 inhibitors in combination with other glucose-lowering agents for the treatment of type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 22, 827–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koracevic D., Koracevic G., Djordjevic V., Andrejevic S. and Cosic V. 2001 Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 54, 356–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S., Lam A., Wazir A. and Cheema A. N. 2019 SGLT2 inhibitors and the changing landscape for treatment of diabetes. Ther. Clin. Risk Manag. 15, 861–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunder M., Janic M., Japelj M., Juretic A., Janez A. and Sabovic M. 2018 Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc. Diabetol. 17, 153–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa H., Chang K., Shinozaki S., Yasukawa T., Ishimaru K., Yasuhara S. et al. 2017 iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: possible involvement of Sirt1 S-Nitrosylation-mediated acetylation of p65 NF-κB and p53. PLoS One 18, e0170391.

    Google Scholar 

  • Oguntibeju O. 2014 Antioxidant-antidiabetic agents and human health. https://doi.org/10.5772/57029.

    Article  Google Scholar 

  • Orchard T. J., Nathan D. M., Zinman B., Cleary P., Brillon D., Backlund J. Y. et al. 2015 Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA 313, 45–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozturk Z., Gurpinar T., Vural K., Boyacioglu S., Korkmaz M. and Var A. 2015 Effects of selenium on endothelial dysfunction and metabolic profile in low dose streptozotocin induced diabetic rats fed a high fat diet. Biotech. Histochem. 90, 506–515.

    CAS  PubMed  Google Scholar 

  • Panth N., Paudel K. R. and Parajuli K. 2016 Reactive oxygen species: a key hallmark of cardiovascular disease. J. Adv. I Med. 9, 152–732.

    Google Scholar 

  • Scottish Intercollegiate Guideline Network 2017 Pharmacological management of glycemic control in people with type 2 diabetes. https://www.sign.ac.uk/assets/sign154.pdf.

  • Taegtmeyer H. 1995 One hundred years ago: Oscar Langendorff and the birth of cardiac metabolism. Can. J. Cardol. 1, 1030–1035.

    Google Scholar 

  • Taylor P. C. 2001 Anti-TNF therapy for rheumatoid arthritis and other inflammatory diseases. Mol. Biotechnol. 19, 153–168.

    CAS  PubMed  Google Scholar 

  • Trinder P. 1969 Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22, 158–161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wessels B., Finn R. L., Linde P., Mazzetti P., Nativi S., Riley S. et al. 2014 Issues in the development of open access to research data, Prometheus. Crit. Stud. Innov. 32, 49–66.

    Google Scholar 

  • Wexler D. J. 2019 Management of persistent hyperglycemia in type 2 diabetes mellitus. N. Engl. J. Med. 56, 355–2477.

    Google Scholar 

  • Wiviott S. D., Raz I. and Bonaca M. P. 2019 Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357.

    CAS  PubMed  Google Scholar 

  • Wu W., Liu X. and Han L. 2019 Apoptosis of cardiomyocytes in diabetic cardiomyopathy involves overexpression of glycogen synthase kinase-3β. Biosci. Rec. 39, 1290–1307.

    Google Scholar 

  • Yazar M., Deger Y. and Yur F. 2011 Serum cytokine and vitamin level in experimental diabetic rats. J. Anim. Vet. Adv. 10, 622–626.

    CAS  Google Scholar 

  • Yung L. M., Leung F. P., Yao X., Chen Z. Y. and Huang Y. 2006 Reactive oxygen species in vascular wall. J. Cardiovasc. Hematol. Dis. 6, 1–19.

    CAS  Google Scholar 

  • Zheng J., Woo S. L., Hu X., Botchlett R., Chen L., Huo Y. et al. 2015 Metformin and metabolic diseases: a focus on hepatic aspects. Front. Med. 9, 173–186.

    PubMed  PubMed Central  Google Scholar 

  • Zorniak M., Mitrega K., Bialka S., Porc M. and Krzeminski T. F. 2010 Comparison of thiopental urethane, and pentobarbital in the study of experimental cardiology in rats in vivo. J. Cardiovasc. Pharmacol. 56, 38–44.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzy Fayez Ewida.

Additional information

Corresponding editor: H. A. Ranganath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, S., Hanna, G., El-Nabi, S.H. et al. Dapagliflozin, a sodium glucose cotransporter 2 inhibitors, protects cardiovascular function in type-2 diabetic murine model. J Genet 99, 46 (2020). https://doi.org/10.1007/s12041-020-01196-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01196-9

Keywords

Navigation