Skip to main content

Advertisement

Log in

Meta-analysis of genomic variants and gene expression data in schizophrenia suggests the potential need for adjunctive therapeutic interventions for neuropsychiatric disorders

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Schizophrenia (SZ) is a debilitating mental illness with a multigenic aetiology and significant heritability. Despite extensive genetic studies, the molecular aetiology has remained enigmatic. A recent systems biology study suggested a protein–protein interaction network for SZ with 504 novel interactions. The onset of psychiatric disorders is predominant during adolescence, often accompanied by subtle structural abnormalities in multiple regions of the brain. The availability of BrainSpan Atlas data allowed us to re-examine the genes present in the SZ interactome as a function of space and time. The availability of genomes of healthy centenarians and nonpsychiatric Exome Aggregation Consortium database allowed us to identify the variants of criticality. The expression of the SZ candidate genes responsible for cognition and disease onset was studied in different brain regions during particular developmental stages. A subset of novel interactors detected in the network was further validated using gene expression data of post-mortem brains of patients with psychiatric illness. We have narrowed down the list of drug targets proposed by the previous interactome study to 10 proteins. These proteins belonging to 81 biological pathways are targeted by 34 known Food and Drug Administration-approved drugs that have distinct potential for the treatment of neuropsychiatric disorders. We also report the possibility of targeting key genes belonging to celecoxib pharmacodynamics, \(\hbox {G}\upalpha \) signalling and cGMP-PKG signalling pathways that are not known to be specific to SZ aetiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AbdAlla S., Langer A., Fu X. and Quitterer U. 2013 ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int. J. Mol. Sci. 14, 16917–16942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adzhubei I. A., Schmidt S., Peshkin L., Ramensky V. E., Gerasimova A., Bork P. et al. 2010 A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amberger J. S., Bocchini C. A., Schiettecatte F., Scott A. F. and Hamosh A. 2015 OMIM.org: online mendelian inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43, D789–D798.l

    Article  CAS  PubMed  Google Scholar 

  • Brainstorm Consortium, Anttila V., Bulik-Sullivan B., Finucane H. K., Walters R. K., Bras J. et al. 2018 Analysis of shared heritability in common disorders of the brain. Science 360, 6395.

    Article  CAS  Google Scholar 

  • Cardno A. G., Rijsdijk F. V., West R. M., Gottesman I. I., Craddock N., Murray R. M. et al. 2012 A twin study of schizoaffective-mania, schizoaffective-depression and other psychotic syndromes. Am. J. Med. Genet. 159B, 172–182.

    Article  PubMed  Google Scholar 

  • Carty N. C., Xu J., Kurup P., Brouillette J., Goebel-Goody S. M., Austin D. R. et al. 2012 The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications. Transl. Psychiatry 2, e137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellani C. A., Laufer B. I., Melka M. G., Diehl E. J., O’Reilly R. L. and Singh S. M. 2015 DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Med. Genomics 8, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dal P. I., Chiarini A., Gui L., Chakravarthy B., Pacchiana R., Gardenal E. et al. 2015 Do astrocytes collaborate with neurons in spreading the ‘infectious’ a\(\upbeta \) and Tau drivers of Alzheimer’s disease? Neuroscientist 21, 9–29.

    Article  CAS  Google Scholar 

  • De Peri L., Crescini A., Deste G., Fusar-Poli P., Sacchetti E. and Vita A. 2012 Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Curr. Pharm. Des. 18, 486–494.

    Article  PubMed  Google Scholar 

  • Dolgin E. 2014 Massive schizophrenia genomics study offers New drug directions. Nat. Rev. Drug Discovery 13, 641–642.

    Article  CAS  PubMed  Google Scholar 

  • Eckman E. A., Adams S. K., Troendle F. J., Stodola B. A., Kahn M. A., Fauq A. H. et al. 2006 Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem. 281, 30471–30478.

    Article  CAS  PubMed  Google Scholar 

  • Farrell M. S., Werge T., Sklar P., Owen M. J., Ophoff R. A., O’Donovan M. C. et al. 2015 Evaluating historical candidate genes for schizophrenia. Mol. Psychiatry 20, 555–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillman S. G., Cloonan N., Catts V. S., Miller L. C., Wong J., McCrossin T. et al. 2013 Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol. Psychiatry 18, 206–214.

    Article  CAS  PubMed  Google Scholar 

  • Freedman R., Leonard S., Olincy A., Kaufmann C. A., Malaspina D., Cloninger C. R. et al. 2001 Evidence for the multigenic inheritance of schizophrenia. Am. J. Med. Genet. 105, 794–800.

    Article  CAS  PubMed  Google Scholar 

  • Gadelha A., Vendramini A. M., Yonamine C. M., Nering M., Berberian A., Suiama M. A. et al. 2015a Convergent evidences from human and animal studies implicate angiotensin I-converting enzyme activity in cognitive performance in schizophrenia. Transl. Psychiatry 5, e691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadelha A., Yonamine C. M., Nering M., Rizzo L. B., Noto C., Cogo-Moreira H. et al. 2015b Angiotensin converting enzyme activity is positively associated with IL-17a levels in patients with schizophrenia. Psychiatry Res. 229, 702–707.

    Article  CAS  PubMed  Google Scholar 

  • Ganapathiraju M. K., Thahir M., Handen A., Sarkar S. N., Sweet R. A., Nimgaonkar V. L. et al. 2016 Schizophrenia interactome with 504 novel protein-protein interactions. npj Schizophr. 2, 16012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandal M. J., Haney J. R., Parikshak N. N., Leppa V., Ramaswami G., Hartl C. et al. 2018 Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons A. S., Thomas E. A., Scarr E. and Dean B. 2010 Low density lipoprotein receptor-related protein and apolipoprotein E expression is altered in schizophrenia. Front. Psychiatry 1, 19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillen A. E. and Harris A. 2012 Transcriptional regulation of CFTR gene expression. Front. Biosci. 4, 587–592.

    Article  Google Scholar 

  • Girard S. L., Dion P. A. and Rouleau G. A. 2012 Schizophrenia genetics: putting all the pieces together. Curr. Neurol. Neurosci. Rep. 12, 261–266.

    Article  CAS  PubMed  Google Scholar 

  • Grote S., Prüfer K., Kelso J. and Dannemann M. 2016 ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain. Bioinformatics 32, 3201–3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S., Bisht S. S., Kukreti R., Jain S. and Brahmachari S. K. 2007 Boolean network analysis of a neurotransmitter signaling pathway. J. Theor. Biol. 244, 463–469.

    Article  CAS  PubMed  Google Scholar 

  • Hariprakash J. M., Vellarikkal S. K., Verma A., Ranawat A. S., Jayarajan R., Ravi R. et al. 2018 SAGE: a comprehensive resource of genetic variants integrating South Asian whole genomes and exomes. Database (Oxford). 2018, 1–10.

    Article  PubMed  Google Scholar 

  • Haybaeck J., Postruznik M., Miller C. L., Dulay J. R., Llenos I. C. and Weis S. 2015 Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression Neuropsychiatr. Dis. Treat. 11, 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He R., Yu Z., Zhang R. and Zhang Z. 2014 Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol. Sin. 35, 1227–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendy G. N., Canaff L. and Cole D. E. 2013 The CASR gene: alternative splicing and transcriptional control, and calcium-sensing receptor (CaSR) protein: structure and ligand binding sites. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 285–301.

    Article  CAS  PubMed  Google Scholar 

  • Hindorff L. A., Sethupathy P., Junkins H. A., Ramos E. M., Mehta J. P., Collins F. S. et al. 2009 Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobgood D. K. 2013 ACE inhibitors could be therapeutic for antisocial personality disorder. Med. Hypotheses 81, 757–759.

    Article  CAS  PubMed  Google Scholar 

  • Hoosain F. G., Choonara Y. E., Tomar L. K., Kumar P., Tyagi C., Toit L. C. et al. 2015 Bypassing P-glycoprotein drug efflux mechanisms: possible applications in pharmacoresistant schizophrenia therapy. Biomed Res. Int. 484963, 1–21.

    Article  CAS  Google Scholar 

  • Howard R., Rabins P. V., Seeman M. V. and Jeste D. V. 2000 Late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: an international consensus. The international late-onset schizophrenia group. Am. J. Psychiatry 157, 172–178.

    Article  CAS  PubMed  Google Scholar 

  • Imming P., Sinning C. and Meyer A. 2006 Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discovery 5, 821–834.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis C. I., Goncalves M. B., Clarke E., Dogruel M., Kalindjian S. B., Thomas S. A. et al. 2010 Retinoic acid receptor-\(\upalpha \) signalling antagonizes both intracellular and extracellular amyloid-\(\upbeta \) production and prevents neuronal cell death caused by amyloid-\(\upbeta \). Eur. J. Neurosci. 32, 1246–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamburov A., Pentchev K., Galicka H., Wierling C., Lehrach H. and Herwig R. 2011 ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717.

    Article  CAS  PubMed  Google Scholar 

  • Kariuki S. N., Franek B. S., Mikolaitis R. A., Utset T. O., Jolly M., Skol A. D. et al. 2010 Promoter variant of PIK3C3 Is associated with autoimmunity against Ro and Sm epitopes in African-American lupus patients. J. Biomed. Biotechnol. 826434, 1–7.

    Article  CAS  Google Scholar 

  • Kataoka M., Matoba N., Sawada T., Kazuno A. A., Ishiwata M., Fujii K. et al. 2016 Exome sequencing for bipolar disorder points to roles of de Novo loss-of-function and protein-altering mutations. Mol. Psychiatry 21, 885–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshavan M. S., Anderson S. and Pettegrew J. W. 1994 Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J. Psychiatr. Res. 28, 239–265.

    Article  CAS  PubMed  Google Scholar 

  • Kibar Z., Bosoi C. M., Kooistra M., Salem S., Finnell R. H., De-Marco P. et al. 2009 Novel mutations in VANGL1 in neural tube defects. Hum. Mutat. 30, E706–E715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D. H., Sarbassov D. D., Ali S. M., King J. E., Latek R. R., Erdjument-Bromage H. et al. 2002 mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Kim J. Y., Ho H., Kim N., Liu J., Tu C. L., Yenari M. A. et al. 2014 Calcium-sensing receptor (CaSR) as a novel target for ischemic neuroprotection. Ann. Clin. Transl. Neurol. 1, 851–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V., Sanseau P., Simola D. F., Hurle M. R. and Agarwal P. 2016 Systematic analysis of drug targets confirms expression in disease-relevant tissues. Sci. Rep. 6, 36205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafioniatis A., Orfanidou M. A., Papadopoulou E. S. and Pitsikas N. 2016 Effects of the inducible nitric oxide synthase inhibitor aminoguanidine in two different rat models of schizophrenia. Behav. Brain Res. 1, 14–21.

    Article  CAS  Google Scholar 

  • Lanz T. A., Joshi J. J., Reinhart V., Johnson K., Grantham I. I. L. E. and Volfson D. 2015 STEP levels Are unchanged in Pre-frontal Cortex and associative Striatum in post-mortem human brain samples from subjects with schizophrenia, bipolar disorder and Major depressive disorder. PLoS One 10, e0121744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehtinen V., Joukamaa M., Lahtela K., Raitasalo R., Jyrkinen E., Maatela J. et al. 1990 Prevalence of mental disorders among adults in Finland: basic results from the Mini Finland health survey. Acta Psychiatr. Scand. 81, 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Lek M., Karczewski K. J., Minikel E. V., Samocha K. E., Banks E., Fennell T. et al. 2016 Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner V., McCaffery P. J. and Ritsner M. S. 2016 Targeting retinoid receptors to treat schizophrenia: rationale and progress to date. CNS Drugs 30, 269–280.

    Article  CAS  PubMed  Google Scholar 

  • Lidow M. S. 2003 Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res. Brain Res. Rev. 43, 70–84.

    Article  CAS  PubMed  Google Scholar 

  • Lipton J. O. and Sahin M. 2014 The neurology of mTOR. Neuron 84, 275–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaspina A. and Michael-Titus A. T. 2008 Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration? J. Neurochem. 104, 584–595.

    CAS  PubMed  Google Scholar 

  • Marsden P. A., Heng H. H., Scherer S. W., Stewart R. J., Hall A. V., Shi X. M. et al. 1993 Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J. Biol. Chem. 268, 17478–17488.

    CAS  PubMed  Google Scholar 

  • McCullumsmith R. E., Gupta D., Beneyto M., Kreger E., Haroutunian V., Davis K. L. et al. 2007 Expression of transcripts for myelination-related genes in the anterior cingulate Cortex in schizophrenia. Schizophr. Res. 90, 15–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald C., Kenna P. and Larkin T. 1998 Retinitis pigmentosa and schizophrenia. Eur. Psychiatry 13, 423–426.

    Article  CAS  PubMed  Google Scholar 

  • McGrath J., Saha S., Chant D. and Welham J. 2008 Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 30, 67–76.

    Article  PubMed  Google Scholar 

  • Miyakawa T., Leiter L. M., Gerber D. J., Gainetdinov R. R., Sotnikova T. D., Zeng H. et al. 2003 Conditional calcineurin knockout mice exhibit multiple abnormal behaviours related to schizophrenia. Proc. Natl. Acad. Sci. USA 100, 8987–8992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokhtari R. and Lachman H. M. 2016 The Major histocompatibility Complex (MHC) in schizophrenia: a review. J. Clin. Cell. Immunol. 7, 479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadalin S., Ristić S., Rebić J., Jengić S. V., Kapović M. and Buretić-Tomljanović A. 2017 The insertion/deletion polymorphism in the angiotensin-converting enzyme gene and nicotine dependence in schizophrenia patients. J. Neural Transm. 124, 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Naheed M. and Green B. 2001 Focus on clozapine. Curr. Med. Res. Opin. 17, 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa T., Kikuchi M., Ishikawa M., Yamamori H., Nagayasu K., Matsumoto T. et al. 2017 Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine. Schizophr. Res. 181, 75–82.

    Article  PubMed  Google Scholar 

  • Narayanaswamy J. C., Viswanath B. and Bada Math S. 2013 Schizophrenia and retinitis pigmentosa: are there mechanisms which blind insanity? Eur. Psychiatry 47, 95–96.

    Google Scholar 

  • Nourooz-Zadeh J., Tajaddini-Sarmadi J., Ling K. L. and Wolff S. P. 1996 Low-density lipoprotein is the major carrier of lipid hydroperoxides in plasma. Relevance to determination of total plasma lipid hydroperoxide concentrations. Biochem. J. 313, 781–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham X., Song G., Lao S., Goff L., Zhu H., Valle D. et al. 2016 The DPYSL2 gene connects mTOR and schizophrenia. Transl. Psychiatry 6, e933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilar S. 2008 Association study of endothelial nitric oxide synthase (NOS3) gene polymorphisms And schizophrenia. Schizophr. Res. 102, 1–3.

    Google Scholar 

  • Pitsikas N. 2016 The role of nitric oxide synthase inhibitors in schizophrenia. Curr. Med. Chem. 23, 2692–2705.

    Article  CAS  PubMed  Google Scholar 

  • Ponta H., Sherman L. and Herrlich P. A. 2003 CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4, 33–45.

    Article  CAS  PubMed  Google Scholar 

  • Puljak L. and Kilic G. 2006 Emerging roles of chloride channels in human diseases. Biochim. Biophys. Acta. 1762, 404–413.

    Article  CAS  PubMed  Google Scholar 

  • Rioux L. and Arnold S. E. 2005 The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res. 30, 13–21.

    Article  CAS  Google Scholar 

  • Ripke S., Neale B. M., Corvin A., Walters J. T., Farh K. H., Holmans P. A. et al. 2014 Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427.

    Article  CAS  PubMed Central  Google Scholar 

  • Rogers J. and Taylor M. J. 2017 Pharmacological agents to reduce readmissions in bipolar disorder. J. Psychopharmacol. (Oxf.). 31, 387–388.

    Article  CAS  Google Scholar 

  • Ruderfer D. M., Ripke S., McQuillin A., Boocock J., Stahl E. A., Pavlides J. M. W. et al. 2018 Genomic dissection of bipolar disorder and schizophrenia including 28 subphenotypes. Cell 173, 1705–1715.

    Article  CAS  PubMed Central  Google Scholar 

  • Saito S., Takahashi N., Maeno N., Ito Y., Aleksic B., Usui H. et al. 2008 An association study of tachykinin receptor 3 gene with schizophrenia in the Japanese population. NeuroReport 19, 471–473.

    Article  CAS  PubMed  Google Scholar 

  • Saleem Q., Dash D., Gandhi C., Kishore A., Benegal V., Sherrin T. et al. 2001 Association of CAG repeat loci on chromosome 22 with schizophrenia and bipolar disorder. Mol. Psychiatry 6, 694–700.

    Article  CAS  PubMed  Google Scholar 

  • Sanders A. R., Drigalenko E. I., Duan J., Moy W., Freda J., Göring H. H. H. et al. 2017 Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: new data and a meta-analysis. Transl. Psychiatry 7, e1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serretti A. and Mandelli L. 2008 The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions. Mol. Psychiatry  13, 742–771.

    Article  CAS  PubMed  Google Scholar 

  • Shen W. W. 1999 A history of antipsychotic drug development. Compr. Psychiatry 40, 407–414.

    Article  CAS  PubMed  Google Scholar 

  • Shinkai T., Ohmori O., Hori H. and Nakamura J. 2002 Allelic association of the neuronal nitric oxide synthase (NOS1) gene with schizophrenia. Mol. Psychiatry 19, 560–563.

    Article  CAS  Google Scholar 

  • Soudais C., Villartay D. J. P., Le D. F., Fischer A. and Lisowska-Grospierre B. 1993 Independent mutations of the human CD3-epsilon gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nat. Genet. 3, 77–81.

    Article  CAS  PubMed  Google Scholar 

  • Sušilová L., Češková E., Hampel D., Sušil A. and Šim\(\mathring{{\rm u}}\)nek J. 2017 Changes in BMI in hospitalized patients during treatment with antipsychotics, depending on gender and other factors. Int. J. Psychiatry Clin. Pract. 21, 112–117.

  • Takahashi S., Cui Y. H., Han Y. H., Fagerness J. A., Galloway B., Shen Y. C. et al. 2008 Association of SNPs and haplotypes in APOL1, 2 and 4 with schizophrenia. Schizophr. Res. 104, 153–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang R., Zhao X., Fang C., Tang W., Huang K., Wang L. et al. 2008 Investigation of variants in the promoter region of PIK3C3 in schizophrenia. Neurosci. Lett. 437, 42–44.

    Article  CAS  PubMed  Google Scholar 

  • Tebbenkamp A. T., Willsey A. J., State M. W. and Sestan N. 2014 The developmental transcriptome of the human brain: implications for neurodevelopmental disorders. Curr. Opin. Neurol. 27, 149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswanath B., Rao N. P., Narayanaswamy J. C., Sivakumar P. T., Kandasamy A., Kesavan M. et al. 2018 Discovery biology of neuropsychiatric syndromes (DBNS): a center for integrating clinical medicine and basic science. BMC Psychiatry 18, 106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L., Zhou K., Fu Z., Yu D., Huang H., Zang X. et al. 2017 Brain development and Akt signaling: the crossroads of signaling pathway and neurodevelopmental diseases. J. Mol. Neurosci. 61, 379–384.

    Article  CAS  PubMed  Google Scholar 

  • Wass C., Svensson L., Fejgin K., Pålsson E., Archer T., Engel J. A. et al. 2008 Nitric oxide synthase inhibition attenuates phencyclidine-induced disruption of cognitive flexibility. Pharmacol. Biochem. Behav. 89, 352–359.

    Article  CAS  PubMed  Google Scholar 

  • Wong M. L., Dong C., Maestre-Mesa J. and Licinio J. 2008 Polymorphisms in inflammation-related genes are associated with susceptibility to Major depression and antidepressant response. Mol. Psychiatry 13, 800–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates A., Akanni W., Amode M. R., Barrell D., Billis K., Carvalho-Silva D. et al. 2016 Ensembl 2016. Nucleic Acids Res. 44, D710–D716.

    Article  CAS  PubMed  Google Scholar 

  • Yin X., Lin Y., Shen C., Wang L., Zuo X., Zheng X. et al. 2017 Integration of expression quantitative trait loci and pleiotropy identifies a novel psoriasis susceptibility gene, PTPN1. J. Gene Med. 19, 1–2.

    Article  CAS  Google Scholar 

  • Zammit S., Lewis S., Gunnell D. and Smith G. D. 2007 Schizophrenia and neural tube defects: comparisons from an epidemiological perspective. Schizophr. Bull. 33, 853–858.

    Article  PubMed  Google Scholar 

  • Zelinger L., Banin E., Obolensky A., Mizrahi-Meissonnier L., Beryozkin A., Bandah-Rozenfeld D. et al. 2011 A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, Is associated with autosomal-recessive retinitis Pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 88, 207–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C., Fang X., Yao P., Mao Y., Cai J., Zhang Y. et al. 2017 Metabolic adverse effects of olanzapine on cognitive dysfunction: a possible relationship between BDNF and TNF-alpha. Psychoneuroendocrinology 81, 138–143.

    Article  CAS  PubMed  Google Scholar 

  • Zhou M., Li W., Huang S., Song J., Kim J. Y., Tian X. et al. 2013 mTOR inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron 77, 647–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SKB is a recipient of the J. C. Bose National Fellowship. ACS thanks Mohandas Pai foundation for providing fellowship support through Centre for Open Innovation, IndianCST. We thank Raja Seevan, Sri Kumar and the IndianCST team for the infrastructure support. We thank NIMHANS for providing institutional support to SJ. We thank N. Balakrishnan for providing access to the computational facility at the Supercomputer Education and Research Centre, Indian Institute of Science. We also thank Vinod Scaria for providing access to the allele frequencies from his centenarian genome data and Beena Pillai for inputs on gene expression data analysis. We finally thank Meera Purushottam, Ramakrishnan Kannan, Biju Viswanath and Ravi Kumar Nadella for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir K. Brahmachari.

Additional information

Corresponding editor: S. Ganesh

SKB conceptualized and designed the project. ACS and AKJ performed the gene expression data analysis. AKP performed the meta-analysis of variants and PS constructed the spatio-temporal network. ACS and SKB wrote the manuscript. SJ provided intellectual support in interpreting the results and editing the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chellappa, S.A., Pathak, A.K., Sinha, P. et al. Meta-analysis of genomic variants and gene expression data in schizophrenia suggests the potential need for adjunctive therapeutic interventions for neuropsychiatric disorders. J Genet 98, 60 (2019). https://doi.org/10.1007/s12041-019-1101-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1101-6

Keywords

Navigation