Skip to main content

Advertisement

Log in

An efficient method to handle the ‘large p, small n’ problem for genomewide association studies using Haseman–Elston regression

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The ‘large p, small n’ problem in genomewide association studies (GWAS) is an important subject in genetic studies. Many approaches have been proposed for this issue, but none of them successfully combine the Haseman–Elston (H–E) regression with sliding-window scan approaches in GWAS. In this article, we extended H–E regression to GWAS, and replaced original data with different measurements of phenotype of sib pairs. Meanwhile, we also applied hidden Markov model to infer identity by state. Using subsequent simulation studies, we found that it had higher statistical power than the corresponding single-marker association studies. The advantage of the H–E regression was also sufficient to capture about 48.01% of the quantitative trait locus (QTL). Meanwhile, the results show that the power decreases with the increase in the number of QTLs, and the power of H–E regression is sensitive to heritability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Atwell S., Huang Y. S., Vilhjalmsson B. J., Willems G., Horton M., Li Y. et al. 2010 Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber M. J., Cordell H. J., MacGregor A. J. and Andrew T. 2004 Gamma regression improves Haseman–Elston and variance components linkage analysis for sib-pairs. Genet. Epidemiol. 26, 97–107.

    Article  PubMed  Google Scholar 

  • Bercovici S., Meek C., Wexler Y. and Geiger D. 2010 Estimating genome-wide IBD sharing from SNP data via an efficient hidden Markov model of LD with application to gene mapping. Bioinformatics 26, i175–i182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G. B. 2014 Estimating heritability of complex traits from genome-wide association studies using IBS-based Haseman–Elston regression. Front. Genet. 5, 107.

    PubMed  PubMed Central  Google Scholar 

  • Daetwyler H. D., Calus M. P., Pong-Wong R., de Los Campos G. and Hickey J. M. 2013 Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193, 347–365.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Los Campos G., Hickey J. M., Pong-Wong R., Daetwyler H. D. and Calus M. P. 2013 Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193, 327–345.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFries J. C. 2010 Haseman and Elston sib-pair linkage analysis: a brief historical note. Behav. Genet. 40, 1–2.

    Article  PubMed  Google Scholar 

  • Diao G. and Vidyashankar A. N. 2013 Assessing genome-wide statistical significance for large p small n problems. Genetics 194, 781–783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drigalenko E. 1999 Matrix representation of the Haseman–Elston method. Theor. Popul. Biol. 55, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Elston R. C., Buxbaum S., Jacobs K. B. and Olson J. M. 2000 Haseman and Elston revisited. Genet. Epidemiol. 19, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Etzel C. J., Shete S., Beasley T. M., Fernandez J. R., Allison D. B. and Amos C. I. 2003 Effect of Box–Cox transformation on power of Haseman–Elston and maximum-likelihood variance components tests to detect quantitative trait loci. Hum. Hered. 55, 108–116.

    Article  CAS  PubMed  Google Scholar 

  • Forrest W. F. 2001 Weighting improves the new Haseman–Elston method. Hum. Hered. 52, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Franke D., Kleensang A., Elston R. C. and Ziegler A. 2005 Haseman–Elston weighted by marker informativity. BMC Genet. 6 suppl 1, S50.

    Article  PubMed  Google Scholar 

  • Garner C. P. 2002 Nonparametric linkage analysis. I. Haseman–Elston. Methods Mol. Biol. 195, 37–60.

    CAS  PubMed  Google Scholar 

  • Gerhard D. and Hothorn L. A. 2010 Rank transformation in Haseman–Elston regression using scores for location-scale alternatives. Hum. Hered. 69, 143–151.

    Article  PubMed  Google Scholar 

  • Hadicke O., Pahlke F. and Ziegler A. 2008 A general approach for sample size and power calculations based on the Haseman–Elston method. Biom. J. 50, 257–269.

    Article  PubMed  Google Scholar 

  • Legarra A. and Misztal I. 2008 Technical note: computing strategies in genome-wide selection. J. Dairy. Sci. 91, 360–366.

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen T. H., Hayes B. J. and Goddard M. E. 2001 Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sham P. C. and Purcell S. 2001 Equivalence between Haseman–Elston and variance-components linkage analyses for sib pairs. Am. J. Hum. Genet. 68, 1527–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X., Alam M., Fikse F. and Ronnegard L. 2013 A novel generalized ridge regression method for quantitative genetics. Genetics 193, 1255–1268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shete S., Jacobs K. B. and Elston R. C. 2003 Adding further power to the Haseman and Elston method for detecting linkage in larger sibships: weighting sums and differences. Hum. Hered. 55, 79–85.

    Article  PubMed  Google Scholar 

  • Single R. M. and Finch S. J. 1995 Gain in efficiency from using generalized least squares in the Haseman–Elston test. Genet. Epidemiol. 12, 889–894.

    Article  CAS  PubMed  Google Scholar 

  • Solberg Woods L. C., Holl K., Tschannen M. and Valdar W. 2010 Fine-mapping a locus for glucose tolerance using heterogeneous stock rats. Physiol. Genomics 41, 102–108.

    Article  PubMed  Google Scholar 

  • Stoesz M. R., Cohen J. C., Mooser V, Marcovina S. and Guerra R. 1997 Extension of the Haseman–Elston method to multiple alleles and multiple loci: theory and practice for candidate genes. Ann. Hum. Genet. 61, 263–274.

    CAS  PubMed  Google Scholar 

  • Valdar W., Solberg L. C., Gauguier D., Burnett S., Klenerman P., Cookson W. O. et al. 2006 Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat. Genet. 38, 879–887.

    Article  CAS  PubMed  Google Scholar 

  • Wang T. and Elston R. C. 2005 Two-level Haseman–Elston regression for general pedigree data analysis. Genet. Epidemiol. 29, 12–22.

    Article  CAS  PubMed  Google Scholar 

  • Weeks D. E. and Harby L. D. 1995 The affected-pedigree-member method: power to detect linkage. Hum. Hered. 45, 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Won S., Elston R. C. and Park T. 2006 Extension of the Haseman–Elston regression model to longitudinal data. Hum. Hered. 61, 111–119.

    Article  PubMed  Google Scholar 

  • Xu X., Weiss S., Xu X. and Wei L. J. 2000 A unified Haseman–Elston method for testing linkage with quantitative traits. Am. J. Hum. Genet. 67, 1025–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon S., Suh Y. J., Mendell N. R. and Ye K. Q. 2005 A Bayesian approach for applying Haseman–Elston methods. BMC Genet. 6 suppl 1, S39.

    Article  PubMed  Google Scholar 

  • Yu T., Ye H., Sun W., Li K. C., Chen Z., Jacobs S. et al. 2007 A forward–backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array. BMC Bioinformatics 8, 145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y. M., Lu H. Y. and Yao L. L. 2008 Multiple quantitative trait loci Haseman–Elston regression using all markers on the entire genome. Theor. Appl. Genet. 117, 683–690.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A., Boddeker I. R. and Geller F. 2001 A bivariate Haseman–Elston method and application to the analysis of asthma-related phenotypes on chromosome 5q. Genet. Epidemiol. 21 suppl 1, S216–S221.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the editor and referees for helpful comments. This work was supported by the National Natural Science Foundation of China (grant no. 31460594), China Scholarship Council (grant no. 201308155140), Hetao College teaching and research project (grant no. HTXYJZ14005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BUJUN MEI.

Additional information

Corresponding editor: Rajiva Raman

Bujun Mei initiated the idea, developed the theory and derived the equations; and wrote the paper. Zhihua Wang conducted the simulation studies and obtained the analytical results. All authors approved the final version of the paper.

[Mei B. and Wang Z. 2016 An efficient method to handle the ‘large p, small n’ problem for genomewide association studies using Haseman–Elston regression. J. Genet. 95, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MEI, B., WANG, Z. An efficient method to handle the ‘large p, small n’ problem for genomewide association studies using Haseman–Elston regression. J Genet 95, 847–852 (2016). https://doi.org/10.1007/s12041-016-0705-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0705-3

Keywords

Navigation