Skip to main content
Log in

Positive selection in the leucine-rich repeat domain of Gro1 genes in Solanum species

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In pathogen resistant plants, solvent-exposed residues in the leucine-rich repeat (LRR) proteins are thought to mediate resistance by recognizing plant pathogen elicitors. In potato, the gene Gro1-4 confers resistance to Globodera rostochiensis. The investigation of variablity in different copies of this gene represents a good model for the verification of positive selection mechanisms. Two datasets of Gro1 LRR sequences were constructed, one derived from the Gro1-4 gene, belonging to different cultivated and wild Solanum species, and the other belonging to paralogues of a resistant genotype. Analysis of nonsynonymous to synonymous substitution rates (K a /K s ) highlighted 14 and six amino acids with K a /K s >1 in orthologue and paralogue datasets, respectively. Selection analysis revealed that the leucine-rich regions accumulate variability in a very specific way, and we found that some combinations of amino acids in these sites might be involved in pathogen recognition.

The results confirm previous studies on positive selection in the LRR domain of R protein in Arabidopsis and other model plants and extend these to wild Solanum species. Moreover, positively selected sites in the Gro1 LRR domain show that coevolution mainly occurred in two regions on the internal surface of the three-dimensional horseshoe structure of the domain, albeit with different evolutionary forces between paralogues and orthologues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Afzal A. J., Wood A. J. and Lightfoot D. A. 2008 Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol. Plant Microbe Interact. 21, 507–517.

  • Barone A., Ritter E., Schachtschabel U., Debner T., Salamini F. and Gebhardt C. 1990 Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Mol. Gen. Genet. 224, 177–182.

  • Bergelson J., Kreitman M., Stahl E. A. and Tian D. 2001 Evolutionary dynamics of plant R-Genes. Science 292, 2281–2285.

  • Cai D. G., Kleine M., Kifle S., Harloff H. J., Sandal N. N., Marcker K. A et al. 1997 Positional cloning of a gene for nematode resistance in sugar beet. Science 275, 832–834.

  • Chai J. J., She J., Han Z. F., Kim T. W., Wang J. J., Cheng W. et al. 2011 Structural insight into brassinosteroid perception by BRI1. Nature 474, 472–496.

  • Crooks G. E., Hon G., Chandonia J. M. and Brenner S. E. 2004 WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190.

  • Dangl J. L. and Jones G. D. J. 2001 Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.

  • De Young B. J. and Innes W. R. 2006 Plant NBS-LRR proteins in pathogen sensing and host defence. Nat. Immunol. 7 12, 1243–1249.

  • Delport W., Scheffler K. and Seoighe C. 2009 Models of coding sequence evolution. Brief. Bioinform. 10, 97–109.

  • Dodds P. N., Lawrence G. J. and Ellis J. G. 2001 Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 Rust resistance specificities in flax. Plant Cell 13, 163–178.

  • Dodds P. N., Lawrence G. J., Catanzariti A. -M., Teh T., Wang C. -I. A., Ayliffe M. A. et al. 2006 Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. USA 103, 8888–8893.

  • Doron-Faigenboim A. and Pupko T. 2006 A combined empirical and mechanistic codon model. Mol. Biol. Evol. 24, 388–397.

  • Ellis J. and Jones D. 1998 Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr. Opin. Plant Biol. 1, 288–293.

  • Ellis J., Dodds P. and Pryor T. 2000 The generation of plant disease resistance gene specificities. Trends Plant Sci. 5, 373–379.

  • Ellis J. G., Lawrence G. J. and Dodds P. N. 2007 Further analysis of gene-for-gene disease resistance specificity in Flax. Mol. Plant Pathol. 8, 103–109.

  • Enkhbayar P., Kamiya M., Osaki M., Matsumoto T. and Matsushima N. 2004 Structural principles of leucine-rich repeat (LRR) proteins. Proteins 54, 394–403.

  • Flor H. H. 1971 The current status of the gene for gene concept. Annu. Rev. Phytopathol. 9, 275–296.

  • Fluhr R. 2001 Sentinels of disease. Plant resistance genes. Plant Physiol. 127, 1367–1374.

  • Graur D. and Li W. H. 2000. Fundamentals of molecular evolution, 2nd edition. Sinauer Press, Sunderland, USA.

  • Hammond-Kosack K. E. and Parker J. E. 2003 Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14, 177–193.

  • Hothorn M., Belkhadir Y., Dreux M., Dabi T., Noel J. P., Wilson I. A. et al. 2011 Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474, 467–471.

  • Jaillais Y., Belkhadir Y., Balsemao-Pires E., Dangl J. L. and Chory J. 2011 Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc. Natl. Acad. Sci. USA 108, 8503–8507.

  • Jann O., Werling D., Chang J. S., Haig D. and Glass E. 2008 Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol. Biol. 8, 288.

  • Jia Y., McAdams S., Bryan G., Hershey H. P. and Valent B. 2000 Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO. J. 19, 4004–4014.

  • Jiang H., Wang C., Ping L., Tian D. and Yang S. 2007 Pattern of LRR nucleotide variation in plant resistance genes. Plant Sci. 173, 253–261.

  • Kajava A. V., Anisimova M. and Peeters N. 2008 Origin and evolution of GALA-LRR, a new member of the CC-LRR subfamily: from plants to bacteria? PLoS One 3, e1694.

  • Kobe B. and Deisenhofer J. 1993 Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366, 751–756.

  • Kobe B. and Deisenhofer J. 1995 Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol. 5, 409–416.

  • Kreitman M. 2000 Methods to detect selection in populations with applications to the human. Ann. Rev. Genomics Hum. Genet. 01, 539–559.

  • Martin G. B., Bogdanove A. J. and Sessa G. 2003 Understanding the functions of plant disease resistance proteins. Ann. Rev. Plant Biol. 54, 23–61.

  • MacCallum C. and Hill E. 2006 Being Positive about Selection. PLoS Biol. 4, e8.

  • McHale L., Tan X., Koehl P. and Michelmore R. W. 2006 Plant NBS-LRR proteins: Adaptable guards. Genome Biol. 7, 212.

  • Matsushima N. and Miyashita H. 2012 Leucine-rich repeat (LRR) domains containing intervening motifs in plants. Biomolecules 2, 288–311.

  • Meyers B. C., Shen K. A., Rohani P., Gaut B. S. and Michelmore R. W. 1998 Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10, 1833–1846.

  • Michelmore R. W. and Meyers B. C. 1998 Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130.

  • Milligan S. B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P. and Williamson V. M. 1998 The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10, 1307–1319.

  • Mondragon-Palomino M., Meyers B. C., Michelmore R. W. and Gaut B. C. 2002 Pattern of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 12, 1305–1315.

  • Moore R. C. and Purugganan M. D. 2005 The evolutionary dynamics of plant duplicate genes. Curr. Opin. Plant Biol. 8, 122–128.

  • Nielsen R. and Yang Z. H. 1998 Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936.

  • Nunziata A., Ruggieri V., Frusciante L. and Barone A. 2007 Allele mining at the locus Gro 1 in Solanum wild species. Acta Hortic. 745, 449–456.

  • Paal J., Henselewski H., Muth J., Meksem K., Menéndez C. M., Salamini F. et al. 2004 Molecular cloning of the potato Gro 1-4 gene conferring resistance to pathotype Ro 1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J. 38, 285–297.

  • Ravensdale M., Nemri A., Thrall P. H., Ellis J. G. and Dodds P. N. 2011 Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol. Plant Pathol. 12, 93–102.

  • Rossi M., Goggin F. L., Milligan S. B., Kaloshian I., Ullman D. E. and Williamson V. M. 1998 The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA 95, 9750–9754.

  • Roth C. and Liberles D. A. 2006 A systematic search for positive selection in higher plants (Embryophytes). BMC Plant Biol. 6, 12.

  • Sanseverino W., Roma G., De Simone M., Faino L., Melito S., Stupka E et al. 2010 PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res. 38, 814—821.

  • Stern A., Doron-Faigenboim A., Erez E., Martz E., Bacharach E. and Pupko T. 2007 Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res. 35, 506–511.

  • Swanson W. J., Nielsen R. and Yang Q. 2003 Pervasive adaptive evolution in mammalian fertilization proteins. Mol. Biol. Evol. 20, 18–20.

  • Thomas C. M., Jones D. A., Parniske M., Harrison K., Balint-Kurti P. G., Hatzixanthis K. and Jones J. D. G. 1997 Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvumidentifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9, 2209–2224.

  • Tor M., Lotze M. T. and Holton N. 2009 Receptor-mediated signalling in plants: molecular patterns and programmes. J. Exp. Bot. 60, 3645–3654.

  • Van der Hoorn R. A. L., Kruijt M., Roth R., Brandwagt B. F., Joosten M. H. A. J, and de Wit P. J. G. M 2001 Intragenic recombination generated two distinct Cf genes that mediate AVR9 recognition in the natural population of Lycopersicon pimpinellifolium. Proc. Natl. Acad. Sci. USA 98, 10493–10498.

  • Yang Z. and Bielawski J. P. 2000 Statistical methods for detecting molecular adaptation. Tree 15, 496–503.

  • Wulff B. B., Chakrabarti A. and Jones D. A. 2009a Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. Mol. Plant Microbe Interact. 22, 1191–1202.

  • Wulff B. B. H., Heese A., Tomlinson-Buhot L., Jones D. A., Pena M. dl. et al. 2009b The major specificity-determining amino acids of the tomato Cf-9 disease resistance protein are at hypervariable solvent-exposed positions in the central leucine-rich repeats. Mol. Plant. Microbe Interact 22, 1203–1213.

  • Zhang H., Seabra M. C. and Deisenhofer J. 2000 Crystal structure of Rab geranylgeranyltransferase at 2.0 Å resolution. Structure 8, 241–251.

  • Zhou B., Dolan M., Sakai H. and Wang G. L. 2007 The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol. Plant Microbe Interact 20, 63–71.

Download references

Acknowledgements

The authors thank Mark Walters for editing the manuscript. This research was supported by the Project AGRONANOTECH funded by MiPAF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AMALIA BARONE.

Additional information

[Ruggieri V., Nunziata A. and Barone A. 2014 Positive selection in the leucine-rich repeat domain of Gro1 genes in Solanum species. J. Genet. 93, xx–xx]

Valentino Ruggieri and Angelina Nunziata contributed equally to this work. VR carried out the molecular genetic studies, sequence elaborations and drafted the manuscript. AN carried out the sequence analysis, alignment and drafted the manuscript. AB conceived the study, participated in its design and coordination, and helped draft the manuscript. All authors have read and approved the final manuscript

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 616 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RUGGIERI, V., NUNZIATA, A. & BARONE, A. Positive selection in the leucine-rich repeat domain of Gro1 genes in Solanum species. J Genet 93, 755–765 (2014). https://doi.org/10.1007/s12041-014-0458-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0458-9

Keywords

Navigation