Skip to main content

Advertisement

Log in

Petrology, geochemistry and geochronology of Neoarchean A-type granite from Alwar Basin, North Delhi Terrane, NW India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

A 2.53 Ga old Jhiri granite has been dated using zircon U–Pb systematics from the lowermost succession of North Delhi Terrane (NDT). The granite is an intrusive into the rocks of meta-volcano sedimentary sequence of basal Raialo Group of the Delhi Supergroup. Geochemically, the pluton is peraluminous, magnesian, alkali-calcic to alkali in character with strong negative anomaly for Ba, Ta, P and Ti and positive anomaly for K, Pb and Th. The plots on tectonic discrimination diagrams show the Jhiri granite to be of A-type with an affinity to the volcanic arc related granitoids. The comparison of Jhiri pluton with other Neoarchean granitoids of the Aravalli Delhi Mobile Belt (ADMB) and Bundelkhand craton shows the granite to be more evolved and have strong depletions for HREEs with (La/Yb)N >20. A hybrid source, having component of fractional crystallization-derived mafic melt mixing with melt generated by partial melting of early formed felsic crust in a back-arc extension or post-orogenic extension setting is proposed as the possible scenario for the generation and emplacement of Jhiri pluton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30

Similar content being viewed by others

References

  • Abdel-Rahman A M 1994 Nature of biotites from alkaline, calc-alkaline and peraluminous magmas; J. Petrol. 35 525–541.

    Google Scholar 

  • Barbarin B 1999 A review of the relationships between granitoid types, their origin and their geodynamic environments; Lithos 46 605–626.

    Google Scholar 

  • Biju-Sekhar S, Yokoyama K, Pandit M K, Okudaira T, Yoshida M and Santosh M 2003 Late Paleoproterozoic magmatism in Delhi Fold Belt, NW India and its implication: Evidence from EPMA chemical ages of zircons; J. Asian Earth Sci. 22 89–207.

    Google Scholar 

  • Chappel B W and White A J R 1974 Two contrasting granite types; Pac. Geol. 8 173–176.

    Google Scholar 

  • Chaudhary A K, Gopalan K and Sastry C A 1984 Present status of the geochronology of the Precambrian rocks of Rajasthan; Tectonophys. 105 131–140.

    Google Scholar 

  • Collins W J, Beams S D, White A J R and Chappell B W 1982 Nature and origin of A-type granites with particular reference to south-eastern Australia; Contrib. Mineral. Petrol. 80 189–200.

    Google Scholar 

  • Crawford A R 1970 The Precambrian geochronology of Rajasthan and Bundelkhand, northern India; Can. J. Earth Sci. 7 91–110.

    Google Scholar 

  • Dall’Agnol R, Frost C D and Rämö O T 2012 IGCP Project 510: ‘A-type granites and related rocks through time’: project vita, results, and contribution to granite research; Lithos 151 1–16.

    Google Scholar 

  • Deer W A, Howie R A and Zussman J 1996 An introduction to the rock-forming minerals; John Wiley and Sons, New York, 528p.

    Google Scholar 

  • Duchesne J C, Berza T, Liegeois J P and Auwera J V 1998 Shoshonitic liquid line of descent from diorite to granite: The late Precambrian post-collisional Tismana pluton (South Carpathians, Romania); Lithos 45 281–303.

    Google Scholar 

  • Eby G N 1992 Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications; Geology 20 641–644.

    Google Scholar 

  • Emslie R F 1978 Anorthosite massifs, rapakivi granites, and late proterozoic rifting of north America; Precamb. Res. 7 61–98.

    Google Scholar 

  • Foster M D 1960 Interpretation of the composition of trioctahedral micas; USGS Prof. Paper 354-B 11–49.

  • Forster H J, Tischendorf G and Trumbull R B 1997 An evaluation of the Rb vs. (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks; Lithos 40 261–293.

  • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J and Frost C D 2001 A geochemical classification for granitic rocks; J. Petrol. 42 2033–2048.

    Google Scholar 

  • Geology and mineral resources of Rajasthan 2001 Geol. Surv. Ind. Misc. Publ. 2nd edn, 30 113p.

  • Gupta S N, Arora Y K, Mathur R K, Iqbaluddin, Prasad B, Sahai T N and Sharma S B 1997 The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat; Mem. Geol. Surv. India 123 262.

    Google Scholar 

  • Heron A M 1917 The geology of north-eastern Rajputana and adjacent district; Mem. Geol. Surv. India 45 1–128.

    Google Scholar 

  • Heron A M 1922 Geology of western Jaipur; Records Geol. Surv. India 54 345–397.

    Google Scholar 

  • Horstwood M S A, Foster G L, Parrish R R, Noble S R and Nowell G M 2003 Common-Pb corrected in-situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS; J. Anal. At. Spectrom. 18 837–846.

    Google Scholar 

  • Kaur P, Chaudhri N, Raczek I, Kröner A and Hofman A 2007 Geochemistry, zircon ages and whole-rock Nd isotopic systematics for Palaeoproterozoic A-type granitoids in the northern part of the Delhi belt, Rajasthan, NW India: Implications for late Palaeoproterozoic crustal evolution of the Aravalli craton; Geol. Mag. 144 361–378.

    Google Scholar 

  • Kaur P, Zeh A, Chaudhri N and Eliyas N 2016 Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids; Precamb. Res. 281 384–413.

    Google Scholar 

  • Kaur P, Zeh A, Chaudhri N and Eliyas N 2017 Two distinct sources of 1.73–1.70 Ga A-type granites from the northern Aravalli orogen, NW India: Constraints from in-situ zircon U–Pb ages and Lu–Hf isotopes; Gondwana Res. 49 164–181.

    Google Scholar 

  • Kaur P, Zeh A and Chaudhri N 2019 Archean crustal evolution of the Aravalli Banded Gneissic Complex, NW India: Constraints from zircon U–Pb ages, Lu–Hf isotope systematics, and whole rock geochemistry of granitoids; Precamb. Res. 327 81–102.

    Google Scholar 

  • Loiselle M C and Wones D R 1979 Characteristics and origin of anorogenic granites; Geol. Soc. Am. Abstr. Progr. 11 468.

    Google Scholar 

  • Ludwig K R 2012 Isoplot v. 3.75: A geochronological toolkit for Microsoft Excel; Special Publication, No 4, Berkeley Geochronology Center 75.

  • Maniar P D and Piccoli P M 1989 Tectonic discrimination of granitoids; Geol. Soc. Am. Bull. 101 635–643.

    Google Scholar 

  • McDonough W F and Sun S-s 1995 The composition of the Earth; Chem. Geol. 120 223–253.

    Google Scholar 

  • Mckenzie N R, Hughes N C, Myrow P M, Banerjee D M, Deb M and Planavsky N J 2013 New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications; Precamb. Res. 238 120–128.

    Google Scholar 

  • Middlemost E A K 1985 Magmas and Magmatic Rocks. An Introduction to Igneous Petrology; London, New York: Longman, x + 266p, ISBN0582300800, Geol. Magazine 123(1) 87–88, https://doi.org/10.1017/S0016756800026716.

    Article  Google Scholar 

  • Miller C F, Stoddard E F, Bradfish L J and Dollase W A 1981 Composition of plutonic muscovite: Genetic implications; Canadian Mineral. 19 25–34.

    Google Scholar 

  • Miller C F, McDowell S M and Mapes R W 2003 Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance; Geol. Soc. Am. Bull. 31 529–532.

    Google Scholar 

  • Mondal M E A and Raza A 2013 Geochemistry of sanukitoid series granitoids from the Neoarchean Berach granitoid batholiths, Aravalli Craton, northwestern Indian shield; Curr. Sci. 105 102–108.

    Google Scholar 

  • Morse S A 1982 A partisan review of Proterozoic anorthosites; Am. Mineral. 67 1087–1100.

    Google Scholar 

  • Nakamura N 1974 Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites; Geochim. Cosmochim. Acta 38 757–775.

    Google Scholar 

  • Patino Douce A E 1997 Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids; Geology 25 743–746.

    Google Scholar 

  • Paton C, Woodhead J D, Hellstrom J C, Hergt J M, Greig A and Maas R 2010 Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction; Geochem. Geophys. Geosyst. 11 Q0AA06.

    Google Scholar 

  • Pearce J, Harris N B W and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.

    Google Scholar 

  • Rahaman S M and Mondal M E A 2014 Evolution of continental crust of the Aravalli craton, NW India, during the Neoarchean-Palaeoproterozoic: Evidence from geochemistry of granitoids; Int. Geol. Rev. 57 1510–1525.

    Google Scholar 

  • Rogers J W and Santosh M 2002 Configuration of Columbia, a Mesoproterozoic Supercontinent; Gondwana Res. 5 5–22.

    Google Scholar 

  • Schoene B 2014 U–Th–Pb geochronology; In: Treatise on Geochemistry (2nd edn) Rudnick R Elsevier, Oxford, UK 4 341–378.

  • Shand S J 1943 Eruptive rocks. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. John Wiley & Sons, New York.

    Google Scholar 

  • Singh S P 1988 Sedimentation patterns of the Proterozoic Delhi Supergroup, northeastern Rajasthan, India, and their tectonic implications; Sedim. Geol. 58 79–94.

    Google Scholar 

  • Singh K S, Waele B D, Karmakar S, Sarkar S and Biswal T K 2010 Tectonic setting of the Balaram–Kui–Surpagla–Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt, NW India and its implication on correlation with the East African Orogen in the Gondwana assembly; Precamb. Res. 18 669–688.

    Google Scholar 

  • Sinha-Roy S, Malhotra G and Mohanty M 1998 Geology of Rajasthan; Bangalore, Geol. Soc. India 278.

  • Sláma J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N and Whitehouse M J 2008 Plesovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis; Chem. Geol. 249 1–35.

    Google Scholar 

  • Stacey J S and Kramers J D 1975 Approximation of terrestrial lead isotope evolution by a two-stage model; Earth Planet. Sci. Lett. 26 207–221.

    Google Scholar 

  • Streckeison A 1976 To each plutonic rock its proper name; Earth-Sci. Rev. 12 1–33.

    Google Scholar 

  • Sylvester P J 1989 Post-collisional alkaline granites; J. Geol. 97 261–280.

    Google Scholar 

  • Turner S, Sandiford M and Foden J 1992 Some geodynamic and compositional constraints on ‘postorogenic’ magmatism; Geology 20 931–934.

    Google Scholar 

  • Van-Schmus W R and Bickford M E 1981 Proterozoic chronology and evolution of the mid-continent region, North America; Dev. Precamb. Geol. 4 261–296.

    Google Scholar 

  • Vermeesch P 2018 Isoplot R: A free and open toolbox for geochronology; Geosci. Front. 9 1479–1493.

    Google Scholar 

  • Wang W, Cawood P A, Pandit M K, Zhou M F and Chen T C 2017 Zircon U–Pb age and Hf isotope evidence for an Eoarchean crustal remnant and episodic crustal reworking in response to supercontinent cycles in NW India; J. Geol. Soc. 174 759–772.

    Google Scholar 

  • Wang W, Cawood P A, Pandit M K, Zhou M F and Zhao J H 2019 Evolving passive- and active-margin tectonics of the Paleoproterozoic Aravalli Basin NW India; Geol. Soc. Am. Bull. 131 426–443.

    Google Scholar 

  • Watson E B and Harrison T M 1983 Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types; Earth Planet. Sci. Lett. 64 295–304.

    Google Scholar 

  • Wetherill G W 1956 Discordant uranium–lead ages; Trans. Am. Geophys. Union 37 320–326.

    Google Scholar 

  • Whalen J B, Currie K L and Chappell B W 1987 A-type granites: Geochemical characteristics, discrimination and petrogenesis; Contrib. Mineral. Petrol. 95 407–419.

    Google Scholar 

  • White W M, Albarède F and Télouk P 2000 High-precision analysis of Pb isotopic ratios using multi-collector ICPMS; Chem. Geol. 167 257–270.

    Google Scholar 

  • Wiendenbeck M, Allé P, Corfu F, Griffin W L, Meier M, Oberli F, Von Quadt A, Roddick J C and Spiegel W 1995 Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses; Geostand. Newslett. 19 1–23.

    Google Scholar 

  • Zhao G, Sun M, Wilde S A and Li S 2004 A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup; Earth-Sci. Rev. 67 91–123.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr James Pebam, Senior Geologist, Geological Survey of India, Geochronology and Isotope Geology Division, Central Head Quarters, Kolkata for geochronological study. The authors express their gratitude to Dr Dipayan Guha, Director, Geochronology Division, Central Head Quarters, Kolkata for the help and support for providing the BSE and CL images of studied zircon. The authors also like to thank Addl. Director General and HOD, GSI, Western Region, Jaipur for all the support and help during the present study. The technical discussions and critical comments made by Dr D B Guha, ex-DDG, GSI, WR has improved the manuscript a lot. The suggestions and modifications provided by two anonymous reviewers have helped to improve the overall quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Misra.

Additional information

Communicated by Rajneesh Bhutani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A., Chauhan, A. & Chatterjee, D. Petrology, geochemistry and geochronology of Neoarchean A-type granite from Alwar Basin, North Delhi Terrane, NW India. J Earth Syst Sci 129, 88 (2020). https://doi.org/10.1007/s12040-020-1349-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-1349-5

Keywords

Navigation