Skip to main content

Advertisement

Log in

Geochemistry of ultramafic–mafic rocks of Mesoarchean Sargur Group, western Dharwar craton, India: Implications for their petrogenesis and tectonic setting

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Nuggihalli and Holenarsipur greenstone belts of the western Dharwar craton expose ultramafic–mafic rocks of the Mesoarchean. The rocks in these belts are geochemically considered as komatiites and komatiitic basalts with minor occurrences of tholeiitic and calc-alkaline basalts. The dominant ultramafic rocks of the Nuggihalli greenstone belt are layered and indicate fractionation processes at relatively shallower crustal levels. The Al-undepleted and Al-depleted signatures obtained could be attributed to magmatic differentiation processes and might be due to fractional crystallization of minerals such as hornblende and plagioclase, in addition to cumulus olivine and pyroxene. The chemical heterogeneity in the rocks of these greenstone belts might have therefore developed during the intrusion of the parental melts and their differentiation into a layered igneous complex. The differences in the lithological characteristics of the Holenarsipur and Nuggihalli greenstone belts can be explained by their different crustal levels of exposure. Presence of spinifex-textured komatiites need not necessarily imply that the sources have to be ultramafic and therefore of a deeper origin. This study indicates that the parental melts for unambiguous layered intrusive ultramafic–mafic complexes could be high-Mg basalts originating from relatively shallower levels. The probable geodynamic setting for the emplacement of the rocks of the two greenstone belts could be in a plume-modified mid-ocean ridge that was too thick and buoyant to be subducted, and the decompression-melted magma chamber developed igneous layering as the magma stalled in the lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abbott D H 1996 Plumes and hotspots as sources of greenstone belts; Lithos 37 113–127.

    Google Scholar 

  • Ananta Iyer G V and Vasudev V N 1979 Geochemistry of the Archaean metavolcanic rocks of Kolar and Hutti goldfields, Karnataka, India; J. Geol. Soc. India 20 419–432.

    Google Scholar 

  • Anhaeusser C R 2001 The anatomy of an extrusive–intrusive Archaean mafic–ultramafic sequence: the Nelshoogte Schist Belt and Stolzburg Layered Ultramafic Cmplex, Barberton Greenstone Belt, South Africa; S. Afr. J. Geol. 104 167–204.

    Google Scholar 

  • Anma R, Armstrong R, Orihashi Y, Ike S, Shin K C, Kon Y, Komiya T, Ota T, Kagashima S, Shibuya T, Yamamoto S, Veloso E E, Fanning M and Herve F 2009 Are the Taitao granites formed due to subduction of the Chile Ridge? Lithos 113 246–258.

    Google Scholar 

  • Arndt N T 2008 Komatiites; Cambridge University Press, Cambridge, p 467.

    Google Scholar 

  • Arndt N T, Albarede F and Nisbet E G 1997 Mafic and ultramafic magmatism; In: Greenstone Belts (eds) de Wit M J and Ashwal L D, Oxford University Press, New York, pp. 233–254.

    Google Scholar 

  • Arndt N T and Jenner G A 1986 Crustally contaminated komatiites and basalts from Kambalda, Western Australia; Chem. Geol. 56 229–255.

    Google Scholar 

  • Balakrishnan S, Hanson G N and Rajamani V 1990 Pd and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar Schist Belt, South India; Contrib. Miner. Pet. 107 279–292.

    Google Scholar 

  • Bau M 1991 Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium; Chem. Geol. 93 219–230.

    Google Scholar 

  • Bau M and Knittel U 1993 Significance of slab–derived partial melts and aqueous fluids for the genesis of tholeiitic and calcalkaline island–arc basalts: Evidence from Mt. Arayat, Philippines; Chem. Geol. 105 233–251.

    Google Scholar 

  • Beckinsale R D, Drury S A and Holt R W 1980 3360 Myr old gneisses from the South Indian craton; Nature 283 469–470.

    Google Scholar 

  • Beckinsale R D, Reeves-Smith G, Gale N A, Holt R L W and Thompson B 1982 Rb–Sr and Pb–Pb whole rock isochron ages and REE data for the Archean gneisses and granites, Karnataka State, South India; In: Indo–US workshop on the Precambrian of south India [abs.], National Geophysical Research Institute, Hyderabad, India, pp. 35–36.

  • Bhaskar Rao Y J and Drury S A 1982 Incompatible trace element geochemistry of Archean metavolcanic rocks from Bababudan volcano sedimentary belt, Karnataka; J. Geol. Soc. India 23 1–23.

    Google Scholar 

  • Bhaskar Rao Y J and Naqvi S M 1978 Geochemistry of metavolcanics from the Bababudan schist belt; A Late Archaean/Early Proterozoic volcano-sedimentary pile from India; In: Archaean Geochemistr, Dev. Precamb. Geol. (eds) Windley B F and Naqvi S M, vol. I, Elsevier, Amsterdam, pp. 325–328.

    Google Scholar 

  • Bhaskar Rao Y J, Naha K, Srinivasan R and Gopalan K 1991 Geology, geochemistry and geochronology of the Archaean peninsular gneiss around Gorur, Hassan District, Karnataka, India; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 100 399–412.

    Google Scholar 

  • Bhaskar Rao Y J, Kumar A, Vrevsky A B, Srinivasan R and Anantha Iyer G V 2000 Sm–Nd ages of two meta-anorthosite complexes around Holenarsipur: Constraints on the antiquity of Archean supracrustal rocks of the Dharwar craton; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 109 57–65.

    Google Scholar 

  • Bhaskar Rao Y J, Sivaraman T V, Pantulu C V C, Gopalan K and Naqvi S M 1992 Ages of late Archaean metavolcanics and granites, Dharwar craton: Evidence for early Proterozoic thermo–tectonic events; Precambrian Res. 38 246–270.

    Google Scholar 

  • Bidyananda M, Deomurari M P and Goswami J N 2003 207Pb–206Pb ages of zircons from the Nuggihalli schist belt, Dharwar craton, southern India; Curr. Sci. 85 1482–1485.

    Google Scholar 

  • Bouhallier H, Choukroune P and Ballevre M 1993 Diapirism, bulk homogeneous shortening and transcurrent shearing in the Archaean Dharwar craton: The Holenarsipur area, southern India; Precambrian Res. 63 43–58.

    Google Scholar 

  • Bourdon B, Langmuir C H and Zindler A 1996 Ridge-hotspot interaction along the Mid-Atlantic Ridge between 37°30′ and 40°30′N: The U–Th disequilibrium evidence; Earth Planet. Sci. Lett. 142 175–189.

    Google Scholar 

  • Brown P E, Tocher F E and Chambers A D 1982 Amphiboles in the lilloise intrusion, East Greenland; Miner. Mag. 45 47–54.

    Google Scholar 

  • Buhl D, Grauert B and Raith M 1983 U–Pb zircon dating of Archaean rocks from the South Indian Craton: Results from the amphibolite to granulite facies transition zone at Kabbal quarry, southern Karnataka; Fortschr. Miner. 61 43–45.

    Google Scholar 

  • Chadwick B, Ramakrishnan M, Vasudev V and Viswanatha M N 1989 Facies distributions and structure of Dharwar volcanosedimentary basin: Evidence of late Archaean transpression in southern India; J. Geol. Soc. Lond. 146 825–834.

    Google Scholar 

  • Chadwick B, Ramakrishnan M and Viswanatha M N 1981 Structural and metamorphic relations between Sargur and Dharwar supracrustal rocks and peninsular gneiss in central Karnataka; J. Geol. Soc. India 22 557–569.

    Google Scholar 

  • Chadwick B, Ramakrishnan M and Viswanatha M N 1985a Bababudan—a late Archaean intra-cratonic volcano-sedimentary basin, Karnataka, southern India. Part I: Stratigraphy and basin development; J. Geol. Soc. India 26 769–801.

    Google Scholar 

  • Chadwick B, Ramakrishnan M and Viswanatha M N 1985b Bababudan—A late Archaean intra-cratonic volcano-sedimentary basin, Karnataka, southern India. Part II: Structure; J. Geol. Soc. India 26 802–821.

    Google Scholar 

  • Chadwick B, Ramakrishnan M, Viswanatha M N and Murthy V S 1978 Structural studies in the Archaean Sargur and Dharwar supracrustal rocks of the Karnataka craton; J. Geol. Soc. India 19 531–549.

    Google Scholar 

  • Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence; Precambrian Res. 99 91–111.

    Google Scholar 

  • Chardon D, Jayananda M and Peucat J–J 2011 Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of South India, geological and geophysical implications for orogenic plateaux; Geochem. Geophys. Geosyst. 12 Q02005, http://dx.doi.org/10.1029/2010GC003398.

    Article  Google Scholar 

  • Chardon D, Peucat J-J, Jayananda M, Choukroune P and Fanning C M 2002 Archean granite–greenstone tectonics at Kolar (South India): Interplay of diapirism, bulk inhomogeneous contraction during juvenile accretion; Tectonics 32 1029–1047.

    Google Scholar 

  • Chavagnac V 2004 A geochemical and Nd isotopic study of Barberton komatiites (South Africa): Implication for the Archean mantle; Lithos 75 253–281.

    Google Scholar 

  • Compston W, Williams I S, Campbell I H and Gresham J J 1986 Zircon xenocrysts from the Kambalda volcanics: Age constraints and direct evidence for older continental crust below the Kambalda–Norseman greenstones; Earth Planet. Sci. Lett. 76 299–311.

    Google Scholar 

  • Corgne A, Liebske C, Wood B J, Rubie D C and Frost D J 2005 Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir; Geochim. Cosmochim. Acta 69 485–496.

    Google Scholar 

  • Das Sharma S, Srinivasan R, Ahmad S M and Patil D J 1994 Carbon and oxygen isotopic compositions of the regionally metamorphosed Archaean carbonate rocks of the Dharwar craton: A preliminary appraisal; Curr. Sci. 66 857–860.

    Google Scholar 

  • de Wit M J, Roering C and Hart R J 1992 Formation of an Archaean continent; Nature 357 553–562.

    Google Scholar 

  • Douglass J and Schilling J–G 1999 Plume–ridge interactions of the Discovery and Shona mantle plumes with the southern Mid Atlantic Ridge (40°–55°S); J. Geophys. Res. 104 2941–2962.

    Google Scholar 

  • Drury S A 1981 Geochemistry of Archean metavolcanic rocks from Kudremukh area, Karnataka; J. Geol. Soc. India 22 405–416.

    Google Scholar 

  • Drury S A 1982 Geochemistry of Archaean metavolcanic rocks from the Holenarsipur and Shigegudda volcano-sedimentary belts of Karnataka, south India; Precambrian Res. 19 119–139.

    Google Scholar 

  • Drury S A 1983 The petrogenesis and setting of Archaean volcanics from Karnataka state, south India; Geochim. Cosmochim. Acta 47 317–329.

    Google Scholar 

  • Drury S A, Harris N B W, Holt R W, Reeves-Smith G J and Wightman R T 1984 Precambrian tectonics and crustal evolution in south India; J. Geol. 92 3–20.

    Google Scholar 

  • Drury S A, Van Calsteren P C and Reeves–Smith G J 1987 Sm–Nd isotopic data from Archaean metavolcanic rocks at Holenarsipur, south India; J. Geol. 95 837–843.

    Google Scholar 

  • Elliott T R, Hawkesworth C J and Gronvold K 1991 Dynamic melting of Iceland plume; Nature 351 106–201.

    Google Scholar 

  • Falloon T J, Green D H, Danyushevsky L V and McNeill A W 2008 The composition of near-solidus partial melts of fertile peridotite at 1 and 1.5 GPa: Implications for the petrogenesis of MORB; J. Pet. 49 591–613.

    Google Scholar 

  • Fan J and Kerrich R 1997 Geochemical characteristics of aluminium depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: A heterogeneous mantle plume-convergent margin environment; Geochim. Cosmochim. Acta 61 4723–4744.

    Google Scholar 

  • Fitton J G, Saunders A D, Norry M J, Hardarson B S and Taylor R N 1997 Thermal and chemical structure of the Iceland plume; Earth Planet. Sci. Lett. 153 197–208.

    Google Scholar 

  • Fryer B J, Kerrich R, Hutchinson R W, Peirce M G and Rogers D S 1979 Archaean precious–metal hydrothermal systems, Dome Mine, Abitibi Greenstone belt. I: Patterns of alteration and metal distribution; Can. J. Earth Sci. 16 421–439.

    Google Scholar 

  • Green D H 1975 Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics; J. Geol. Soc. Am. 3 15–18.

    Google Scholar 

  • Grove T L and Parman S W 2004 Thermal evolution of the Earth as recorded by komatiites; Earth Planet. Sci. Lett. 219 173–187.

    Google Scholar 

  • Groves D I, Lesher C M and Gee R D 1984 Tectonic setting of the sulphide nickel deposits of the Western Australian Shield; In: Sulphide Deposits in Mafic and Ultramafic Rocks (eds) Buchanan D L and Jones M J, Institution of Mining and Metallurgy, London, pp. 1–13.

    Google Scholar 

  • Gruau G, Tourpin S, Fourcade S and Blais S 1992 Loss of isotopic (Nd, O) and chemical (REE) memory during metamorphism of komatiites: New evidence from eastern Finland; Contrib. Miner. Pet. 112 66–82.

    Google Scholar 

  • Guivel C, Lagabrielle Y, Bourgois J, Martin H, Arnaud N, Fourcade S, Cotten J and Maury R C 2003 Very shallow melting of oceanic crust during spreading ridge subduction: Origin of near-trench Quaternary volcanism at the Chile Triple Junction; J. Geophys. Res. 108 2345, https://doi.org/10.1029/2002jb002119.

    Article  Google Scholar 

  • Gupta S, Rai S S, Prakasam K S, Srinagesh D, Chadha R K, Priestley K and Gaur V K 2003 First evidence for anomalous thick crust beneath mid-Archean western Dharwar craton; Curr. Sci. 84 1219–1226.

    Google Scholar 

  • Herron E M, Cande S C and Hall B R 1981 An active spreading center collides with a subduction zone: A geophysical survey of the Chile Margin triple junction; J. Geol. Soc. Am. Memoir. 154 683–701.

    Google Scholar 

  • Herzberg C 1992 Depth and degree of melting of komatiites; J. Geophys. Res. 97 4521–4540.

    Google Scholar 

  • Herzberg C 1999 Phase equilibrium constraints on the formation of cratonic mantle; In: Mantle Petrology: Field observations and high pressure experimentation. A tribute to Francis R (Joe) Boyd (eds) Fei Y, Bertka C and Mysen B O, Geochem. Soc. Spec. Publ. 6 241–257.

  • Herzberg C and O’Hara M J 2002 Plume-associated ultramafic magmas of Phanerozoic age; J. Pet. 43 1857–1883.

    Google Scholar 

  • Herzberg C and Zhang J 1996 Melting experiments on anhydrous KLB–1: Compositions of magmas in the upper mantle and transition zone; J. Geophys. Res. 101 8271–8295.

    Google Scholar 

  • Hokada T, Horie K, Satish-Kumar M, Ueno Y, Nasheeth A, Mishima K and Shiraishi K 2012 An appraisal of Archaean supracrustal sequences in Chitradurga schist belt, western Dharwar craton, southern India; Precambrian Res. 227 99–119.

    Google Scholar 

  • Hollings P, Wyman D A and Kerrich R 1999 Komatiite–basalt–rhyolite volcanic associations in Northern Superior Province greenstone belts: Significance of plume–arc interaction in the generation of the proto continental Superior Province; Lithos 46 137–161.

    Google Scholar 

  • Holness M B, Nielsen T F D and Tegner C 2017 The Skaergaard Intrusion of East Greenland: Paradigms, problems and new perspectives; Elements 14 391–396.

    Google Scholar 

  • Huppert H E, Sparks R S J, Turner J S and Arndt N T 1984 Emplacement and cooling of komatiite lavas; Nature 309 19–22.

    Google Scholar 

  • Hussain S M and Naqvi S M 1983 Geological, geophysical and geochemical studies over the Holenarsipur schist belt, Dharwar craton, India; In: Precambrian of South India (eds) Naqvi S M and Rogers J J W, J. Geol. Soc. India Memoir 4 pp. 73–95.

  • Hynes A 1980 Carbonatization and mobility of Ti, Y and Zr in Ascot formation, S.E. Quebec; Contrib. Miner. Pet. 75 79–87.

    Google Scholar 

  • Jafri S H, Subba Rao D V, Ahmad S M and Mathur R 1997 Spinifex textured peridotitic komatiites from Nuggihalli and Holenarsipur schist belts, Karnataka; J. Geol. Soc. India 49 33–38.

    Google Scholar 

  • Jayananda M, Chardon D, Peucat J-J and Capdevila R 2006 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints; Precambrian Res. 150 1–26.

    Google Scholar 

  • Jayananda M, Chardon D, Peucat J-J, Tushipokla and Fanning C M 2015 Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes; Precambrian Res. 268 295–322.

    Google Scholar 

  • Jayananda M, Kano T, Peucat J-J and Channabasappa S 2008 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: Constraints from Nd isotopes and whole rock geochemistry; Precambrian Res. 162 160–179.

    Google Scholar 

  • Jayananda M, Moyen J-F, Martin H, Peucat J-J, Auvray B and Mahabaleswar B 2000 Late Archean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry; Precambrian Res. 99 225–254.

    Google Scholar 

  • Jayananda M, Peucat J-J, Chardon D, Krishna Rao B, Fanning C M and Corfu F 2013 Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U–Pb zircon geochronology and Nd isotopes; Precambrian Res. 227 55–76.

    Google Scholar 

  • Jensen L S 1976 A new method of classifying alkali volcanic rocks; Ont. Div. Miner. Misc. Paper 66 22.

    Google Scholar 

  • Jochum K P, Arndt N T and Hofmann A W 1991 Nb–Th–La in komatiies and basalts: Constraints on komatiite petrogenesis and mantle evolution; Earth Planet. Sci. Lett. 107 272–289.

    Google Scholar 

  • Karsten J L, Klein E M and Sherman S B 1996 Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: Implications of modern ridge subduction systems for the Archean; Lithos 37 143–161.

    Google Scholar 

  • Kato Y, Kawakami T, Kano T, Kunugiza K and Swamy N S 1996 Rare-earth element geochemistry of banded iron formations and associated amphibolite from the Sargur belts, South India; J. Southeast Asian Earth Sci. 14 161–164.

    Google Scholar 

  • Keiding J K, Trumbull R B, Veksler I V and Jerram D A 2011 On the significance of ultra-magnesian olivines in basaltic rocks; Geology 39 1095–1098.

    Google Scholar 

  • Kerr A C, Marriner G F, Arndt N T, Tarney J, Nivia A, Saunders A D and Duncan R A 1996 The petrogenesis of Gorgona komatiites, picrites and basalts: New field, petrographic and geochemical constraints; Lithos 37 245–260.

    Google Scholar 

  • Kerr A C, Saunders A D, Tarney J, Berry N and Hards V L 1995 Depleted mantle plume geochemical signatures; no paradox for plume theories; Geology 23 843–846.

    Google Scholar 

  • Kerrich R, Polat A, Wyman D and Hollings P 1999 Trace element systematics of Mg- to Fe-tholeiitic basalt. Suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis; Lithos 46 163–187.

    Google Scholar 

  • Kerrich R and Xie Q 2002 Compositional recycling structure of an Archean super-plume: Nb–Th–U–LREE systematics of Archean komatiites and basalts revisited; Contrib. Miner. Pet. 142 476–484.

    Google Scholar 

  • King R W and Kerrich R 1987 Fluorapatite fenitization and gold enrichment in sheeted trondhjemites within the Destor–Porcupine fault zone, Taylor Township, Ontario; Can. J. Earth Sci. 24 479–502.

    Google Scholar 

  • Kroner A, Anhaeusser C R, Hoffmann J E, Wong J, Geng H, Hegner E, Xie H, Yang J and Liu D 2016 Chronology of the oldest supracrustal sequences in the Palaeoarchaean Barberton Greenstone Belt, South Africa and Swaziland; Precambrian Res. 279 123–143.

    Google Scholar 

  • Kumar A, Bhaskar Rao Y J, Sivaraman T V and Gopalan K 1996 Sm–Nd ages of Archaean metavolcanics of the Dharwar craton, South India; Precambrian Res. 80 205–216.

    Google Scholar 

  • Kunugiza K, Kato Y, Kano T, Takaba Y, Kuruma I and Sohma T 1996 An Archaean tectonic model of the Dharwar craton, southern India: The origin of the Holenarsipur greenstone belt (Hussan district, Karnataka) and reinterpretation of the Sargur–Dharwar relationship; J. Southeast Asian Earth Sci. 14 149–160.

    Google Scholar 

  • Lagabrielle Y, Moigne Le J, Maury R C, Gotten J and Bourgois J 1994 Volcanic record of the subduction of an active spreading ridge, Taitao peninsula (southern Chile); Geology 22 515–518.

    Google Scholar 

  • Lahaye Y and Arndt N 1996 Alteration of a komatiites flow from Alexo, Ontario, Canada; J. Pet. 37 1261–1284.

    Google Scholar 

  • Lahaye Y, Arndt N, Byerly G, Chauvel C, Fourcade S and Gruau G 1995 The influence of alteration on the trace-element and Nd isotopic compositions of komatiites; Chem. Geol. 126 43–64.

    Google Scholar 

  • Lesher C M and Arndt N T 1995 REE and Nd isotope geochemistry, petrogenesis and volcanic evolution of contaminated komatiites at Kambalda, Western Australia; Lithos 34 127–158.

    Google Scholar 

  • Liu X, Xiao W, Xu J, Castillo P R and Shi Y 2017 Geochemical signature and rock associations of ocean ridge–subduction: Evidence from the Karamaili Paleo–Asian ophiolite in east Junggar, NW China; Gondwana Res. 48 34–49.

    Google Scholar 

  • Ludden J N, Daigneault R, Robert F and Taylor R P 1984 Trace element mobility in alteration zones associated with Archaean Au lode deposits; Econ. Geol. 79 1131–1141.

    Google Scholar 

  • Manikyamba C and Naqvi S M 1997 Late Archaean mantle fertility: Constraints from metavolcanics of the Sandur schist belt, India; Gondwana Res. 1 69–89.

    Google Scholar 

  • Manikyamba C, Naqvi S M, Rao D V S, Mohan M R, Khanna T C, Rao T G and Reddy G L N 2005 Boninites from the Neoarchaean Gadwal Greenstone belt, eastern Dharwar Craton, India: Implications for Archaean subduction processes; Earth Planet. Sci. Lett. 230 65–83.

    Google Scholar 

  • Maya J M, Bhutani R, Balakrishnan S and Rajee Sandya S 2016 Petrogenesis of 3.15 Ga old Banasandra komatiites from the Dharwar craton, India: Implications for early mantle heterogeneity; Geosci. Front. 8 467–481.

    Google Scholar 

  • McCulloch M T and Black L P 1984 Sm–Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism; Earth Planet. Sci. Lett. 71 46–58.

    Google Scholar 

  • Meen J K, Rogers J J W and Fullagar P D 1992 Lead isotope composition in the western Dharwar craton, southern India: Evidence for distinct middle Archaean terraines in the late Archaean craton; Geochim. Cosmochim. Acta 56 2455–2470.

    Google Scholar 

  • Moigne Le J, Lagabrielle Y, Whitechurch H, Girardeau J, Bourgois J and Maury R C 1996 Petrology and geochemistry of the ophiolitic and volcanic suites of the Taitao peninsula—Chile triple junction area; J. South Am. Earth Sci. 9 43–58.

    Google Scholar 

  • Monrad J R 1983 Evolution of sialic terranes in the vicinity of the Holenarasipur belt, Hassan district, Karnataka, India; Geol. Soc. India Mem. 4 343–364.

    Google Scholar 

  • Mukherjee R, Mondal S K, Frei R, Rosing M T, Waight T E, Zhong H and Kumar G R R 2012 The 3.1 Ga Nuggihalli chromite deposits, Western Dharwar craton (India): Geochemical and isotopic constraints on mantle sources, crustal evolution and implications for supercontinent formation and ore mineralization; Lithos 155 392–409.

    Google Scholar 

  • Mukherjee R, Mondal S K, Rosing M T and Frei R 2010 Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar craton (India): Potential parental melts and implications for tectonic setting; Contrib. Miner. Pet. 160 865–885.

    Google Scholar 

  • Murphy J B and Hynes A J 1986 Contrasting secondary mobility of Ti, P, Zr, Nb, and Y in two metabasaltic suites in the Appalachians; Can. J. Earth Sci. 23 1138–1144.

    Google Scholar 

  • Naha K, Srinivasan R, Gopalan K, Pantulu G V C, Subba Rao M V, Vrevsky A B and Bogomolov Y E S 1993 The nature of the basement in the Archaean Dharwar craton of southern India and the age of the peninsular gneiss; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 102 547–565.

    Google Scholar 

  • Naha K, Srinivasan R and Jayaram S 1991 Sedimentational, structural and migmatitic history of the Archaean Dharwar tectonic province, southern India; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 100 413–433.

    Google Scholar 

  • Naqvi S M 1981 The oldest supracrustals of the Dharwar craton, India; J. Geol. Soc. India 23 458–469.

    Google Scholar 

  • Naqvi S M 2005 Geology and evolution of the Indian Plate from Hadean to Holocene (4.0 Ga–4.0 Ka); Capital Books, New Delhi, 450p.

    Google Scholar 

  • Naqvi S M and Hussain S M 1973 Relation between trace and major element composition of Chitradurg metabasalts, Mysore, India, and the Archaean mantle; Chem. Geol. 11 17–30.

    Google Scholar 

  • Naqvi S M, Khan R M K, Manikyamba C, Ram Mohan M and Khanna T C 2006 Geochemistry of the Neoarchaean high-Mg basalts, boninites and adakites from the Kushtagi–Hungund greenstone belt of the Eastern Dharwar Craton (EDC): Implications for the tectonic setting; J. Asian Earth Sci. 27 25–44.

    Google Scholar 

  • Naqvi S M, Manikyamba C, Gnaneswar Rao T, Subba Rao D V, Ram Mohan M and Srinivasa Sarma 2002 Geochemical and isotopic constraints of Neoarchaean fossil plume for evolution of volcanic rocks of Sandur greenstone belt, India; J. Geol. Soc. India 60 27–56.

    Google Scholar 

  • Naqvi S M and Prathap J G R 2007 Geochemistry of adakites from Neoarchaean active continental margin of Shimoga schist belt, Western Dharwar Craton, India: Implications for the genesis of TTG; Precambrian Res. 156 32–54.

    Google Scholar 

  • Naqvi S M and Rogers J J W 1987 Precambrian geology of India; Oxford University Press, New York, p. 223.

    Google Scholar 

  • Naqvi S M, Viswanatha S and Viviswanatha M N 1978 Geology and geochemistry of the Holenarsipur schist belt and its place in the evolutionary history of the Indian peninsula; In: Archean Geochemistry (eds) Windley B F and Naqvi S M, Elsevier, Amsterdam, pp. 109–126.

    Google Scholar 

  • Naslund H R and McBirney A 1996 Mechanisms of formation of igneous layering; In: Layered Intrusions (ed) Cawthorn R G, Elsevier Science B.V., Amsterdam, pp. 1–43.

    Google Scholar 

  • Nebel O, Arculus R J, Ivanic T J and Nebel-Jecobsaen Y J 2013 Lu–Hf isotopic memory of plume–lithosphere interaction in the source of layered mafic intrusions, Windimurra Igneous Complex, Yilgarn Craton, Australia; Earth Planet. Sci. Lett. 380 151–161.

    Google Scholar 

  • Nutman A P, Chadwick B, Krishna Rao B and Vasudev V N 1996 SHRIMP U–Pb ages of acid volcanic rocks in the Chitradurga and Sandur Groups and granites adjacent to Sandur schist belt; J. Geol. Soc. India 47 153–161.

    Google Scholar 

  • Nutman A P, Chadwick B, Ramakrishnan M and Viswanatha M N 1992 SHRIMP U–Pb ages of detrital zircon in Sargur supracrustal rocks in western Karnataka, southern India; J. Geol. Soc. India 39 367–374.

    Google Scholar 

  • Ohtani E 1984 Generation of komatiite magma and gravitational differentiation in the deep upper mantle; Earth Planet. Sci. Lett. 67 261–272.

    Google Scholar 

  • Ohtani E 1990 Majorite fractionation and genesis of komatiites in the deep mantle; Precambrian Res. 48 195–202.

    Google Scholar 

  • Ohtani E, Kawabe I, Moriyama J and Nagata Y 1989 Partitioning of elements between majorite garnet and melt and implications for petrogenesis of komatiite; Contrib. Miner. Pet. 103 263–269.

    Google Scholar 

  • Ordóñez-Calderón J C, Polat A, Fryer B, Gagnon J E, Raith J G and Appel P W U 2008 Evidence for HFSE and REE mobility during calc-silicate metasomatism, Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southern West Greenland; Precambrian Res. 161 317–340.

    Google Scholar 

  • Page N J and Zientek M L 1987 Composition of primary postcumulus amphibole and phlogopite within an olivine cumulate in the stillwater complex, Montana; US Geol. Surv. Bull. 1674-A 35.

    Google Scholar 

  • Patra K, Anand R, Balakrishnan S, Dash J K and Tom N G 2016 Constraints on the evolution of the mafic–ultramafic rock suites of selected Mesoarchean greenstone belts of western Dharwar craton, southern India; Goldschmidt 2016, 26 June–1 July, Yokohama, Japan.

  • Pearce J A 2008 Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust; Lithos 100 14–48.

    Google Scholar 

  • Peucat J–J, Bouhallier H, Fanning C M and Jayananda M 1995 Age of Holenarsipur schist belt, relationships with the surrounding gneisses (Karnataka, south India); J. Geol. 103 701–710.

    Google Scholar 

  • Peucat J-J, Mahabaleswar B and Jayananda M 1993 Age of younger tonalitic Magmatism and granulite metamorphism in the south Indian transition zone (Krishnagiri area): Comparison with older peninsular gneisses from Hassan–Gorur area; J. Metamorph. Geol. 11 879–999.

    Google Scholar 

  • Peucat J J, Vidal P, Bernard-Griffiths J and Condie K C 1987 Sr, Nd and Pb systems across the amphibolite to granulite facies transition in southern India; Terra Cognita 7 333.

    Google Scholar 

  • Peucat J J, Vidal P, Bernard-Griffiths J and Condie K C 1989 Sr, Nd and Pb isotopic systematics in the Archean low- to high-grade transition zone of southern India: Syn-accretion vs. post-accretion granulites; J. Geol. 97 537–550.

    Google Scholar 

  • Polat A and Kerrich R 2000 Archean greenstone belt magmatism and the continental growth–mantle evolution connection: Constraints from Th–Nb–U–LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada; Earth Planet. Sci. Lett. 175 41–54.

    Google Scholar 

  • Polat A, Kerrich R and Wyman D A 1998 The late Archean Schreiber–Hemlo and White River–Dayohessarah greenstone belts, Superior Province: Collages of oceanic plateaus, oceanic arcs, and subduction–accretion complexes; Tectonophys. 289 295–326.

    Google Scholar 

  • Polat A, Kerrich R and Wyman D A 1999 Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: Trace element and Nd isotope evidence for a heterogeneous mantle; Precambrian Res. 94 139–173.

    Google Scholar 

  • Polat A, Longstaffe F J and Frei R 2018 An overview of anorthosite-bearing layered intrusions in the Archaean craton of southern West Greenland and the Superior Province of Canada: Implications for Archaean tectonics and the origin of megacrystic plagioclase; Geodin. Acta 30 84–99.

    Google Scholar 

  • Polat A, Fryer B J, Samson I M, Weisener C, Appel P W U, Frei R and Windley B F 2012 Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: Evidence for hydrous upper mantle in the Archean; Precambrian Res. 214–215 124–153.

    Google Scholar 

  • Puchtel I S, Hofmann A W, Amelin Y W, Grabe-Schonberg C-D, Samsonov A V and Shchipansky A A 1999 Sumozero–Kenozero greenstone belt, SE Baltic Shield: Isotope and trace element constraints; Geochim. Cosmochim. Acta 63 3579–3595.

    Google Scholar 

  • Radhakrishna B P and Naqvi S M 1986 Precambrian continental crust of India and its evolution; J. Geol. 94 145–166.

    Google Scholar 

  • Radhakrishna B P and Vaidyanadhan R 1997 Geology of Karnataka; Geol. Soc. India Banglore 49–73.

  • Rai S S, Borah K, Das R, Gupta S, Srivastava S, Prakasam K S, Sivaram K, Kumar S and Meena R 2013 The south India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX); J. Earth Syst. Sci. 122 1435–1453.

    Google Scholar 

  • Ramakrishnan M, Kroner A and Vankata Dasu S P 1994 Mid–Archean zircon age of Sargur Group by single grain zircon dating and geochemical evidence from clastic origin of metaquartzite from JC Pura greenstone belt, Karnataka; J. Geol. Soc. India 29 471–482.

    Google Scholar 

  • Ramakrishnan M and Viswanatha M N 1981 Holenarsipur belt; In: Early Precambrian Supracrustals of Southern Karnataka (eds) J Swami Nath and M Ramakrishnan, Geol. Surv. India Memoir 112 115–141.

  • Revillon S, Arndt N T, Chauvel C and Hallot E 2000 Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: The plumbing system of an oceanic plateau; J. Pet. 41 1127–1153.

    Google Scholar 

  • Robin–Popieul C C M, Arndt N T, Chauvel C, Byerly G R, Sobolev A V and Wilson A 2012 A new model for Berberton komatiites: Deep critical melting with high melt retention; J. Pet. 53 2191–2229.

    Google Scholar 

  • Rogers J J W 1996 A history of continents in the past three billion years; J. Geol. 104 91–107.

    Google Scholar 

  • Rollinson H 1993 Using Geochemical Data: Evaluation, Presentation, Interpretation; Pearson Education Limited, Harlow, p. 352.

    Google Scholar 

  • Rollinson H R, Windley B F and Ramakrishnan M 1981 Contrasting high and intermediate pressures of metamorphism in the Archean Sargur Schists of southern India; Contrib. Miner. Pet. 76 420–429.

    Google Scholar 

  • Rubin J N, Henry C D and Price J C 1988 Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas; Am. Miner. 74 865–869.

    Google Scholar 

  • Rubin J N, Henry C D and Price J C 1993 The mobility of zirconium and other `immobile` elements during hydrothermal alteration; Chem. Geol. 110 29–47.

    Google Scholar 

  • Sappin A-A, Houle M G, Lesher C M, McNicoll V, Vaillancourt C and Kamber B S 2016 Age constraints and geochemical evolution of the Neoarchean mafic–ultramafic Wabassi Intrusive Complex in the Miminiska–Fort Hope greenstone belt, Superior Province, Canada; Precambrian Res. 286 101–125.

    Google Scholar 

  • Sarma D S, Fletcher I R, Rasmussen B, Mc Naughton N J, Ram Mohan M and Groves D I 2011 Archaean gold mineralisation synchronous with late cratonisation of the western Dharwar Craton, India and xenotime in gold deposits; Miner. Depos. 46 273–288.

    Google Scholar 

  • Saunders A D, Tarney J, Kerr A C and Kent R W 1996 The formation and fate of large oceanic igneous provinces; Lithos 37 81–95.

    Google Scholar 

  • Schau M 1977 Komatiites and quartzites in the Archaean Price Albert Group; In: Volcanic Regimes in Canada (eds) Baragar W R A, Coleman L C and Hall J M, Geol. Association Canada, Spl. paper 16 pp. 341–354.

  • Sobolev A V, Asafov E V, Gurenko A A, Arndt N T, Batanova V G, Portnyagin M V, Garbe–Schonberg D and Krasheninnikov S P 2016 Komatiites reveal a hydrous Archaean deep-mantle reservoir; Nature 531 628.

    Google Scholar 

  • Sossi P A, Eggins S M, Nesbitt R W, Nebel O, Hergt J M, Campbell I H, O`Neill H St C, Van Kranendonk M and Rhodri Devies D 2016 Petrogenesis and geochemistry of Komatiites; J. Pet. 57 147–184.

    Google Scholar 

  • Srikantappa C, Raith M and Ackermand D 1985 High–grade regional metamorphism of ultramafic and mafic rocks from the Archaean Sargur terrane, Karnataka, south India; Precambrian Res. 30 189–219.

  • Srikantia S V and Rao M S 1990 Unusual concentric structure in komatiite of Kibbanahalli Arm of Chitradurga supracrustal belt near Banasandra, Karnataka; J. Geol. Soc. India 36 424–429.

    Google Scholar 

  • Srikantia S V and Venkataramana P 1989 The Archaean komatiites of Nagamangala supracrustal belt, Karnataka; J. Geol. Soc. India 33 210–214.

    Google Scholar 

  • Srinivasan R 1988 Present status of the Sargur group of the Archean Dharwar craton, south India; Indian J. Geol. 60 57–78.

    Google Scholar 

  • Storey M, Mahoney J J, Kroenke L W and Saunders A D 1991 Are oceanic plateaus sites of komatiite formation? Geology 19 376–379.

    Google Scholar 

  • Swami Nath J and Ramakrishnan M 1981 Early Precambrian supracrustals of southern Karnataka; Mem. Geol. Surv. India 112 350.

    Google Scholar 

  • Swami Nath J, Ramakrishnan M and Viswanatha M N 1976 Dharwar stratigraphic model and Karnataka craton evolution; Rec. Geol. Surv. India 107 149–175.

    Google Scholar 

  • Taura H, Yurimoto H, Kato T and Sueno S 2001 Trace element partitioning between silicate perovskites and ultracalcic melt; Phys. Earth Planet. Inter. 124 25–32.

    Google Scholar 

  • Taylor P N, Chadwick B, Moorbath S, Ramakrishnan M and Viswanatha M N 1984 Petrography, chemistry and isotopic ages of peninsular gneiss, Dharwar acid volcanic rocks and the Chitradurga granite with special reference to the late Archean evolution of the Karnataka craton, southern India; Precambrian Res. 23 349–375.

    Google Scholar 

  • Tourpin S, Gruau G, Blais S and Fourcade S 1991 Resetting of REE, and Nd and Sr isotopes during carbonitization of a komatiite flow from Finland; Chem. Geol. 90 15–29.

    Google Scholar 

  • Trendall A F, de Laeter J R, Nelson D R and Bhaskar Rao Y J 1997a Further zircon U–Pb age data for the Daginkatte Formation, Dharwar Supergroup, Karnataka craton; J. Geol. Soc. India 50 25–30.

    Google Scholar 

  • Trendall A F, de Laeter J R, Nelson D R and Mukhopadhyay D 1997b A precise U–Pb age for the base of Mulaingiri Formation (Bababudan Group, Dharwar Supergroup) of the Karnataka craton; J. Geol. Soc. India 50 161–170.

    Google Scholar 

  • Tushipokla and Jayananda M 2013 Geochemical constraints on komatiite volcanism from Sargur Group Nagamangala greenstone belt, western Dharwar craton, southern India: Implications for Mesoarchean mantle evolution and continental growth; Geosci. Front. 4 321–340.

    Google Scholar 

  • Viljoen R P and Viljoen M J 1982 Komatiites—A historical review, In: Komatiites (eds) Arndt N T and Nisbet E G, George Allen and Unwin, London, pp. 5–18.

    Google Scholar 

  • Viswanatha M N and Ramakrishnan M 1975 The pre-Dharwar supracrustal rocks of the Sargur schist complex in southern Karnataka and their tectono-metamorphic significance; Indian Mineral. 16 48–65.

    Google Scholar 

  • Viswanatha M N, Ramakrishnan M and Narayana Kutty T R 1977 Possible spinifex texture in a serpentinite from Karnataka; J. Geol. Soc. India 18 194–197.

    Google Scholar 

  • Williams D A, Kerr R C and Lesher C M 1998 Emplacement and erosion by Archean komatiite lava flows at Kambalda: Revisited; J. Geophys. Res. Solid Earth 103 27,533–27,549.

    Google Scholar 

  • Williams D A, Kerr R C, Lesher C M and Barnes S J 2002 Analytical/numerical modelling of komatiite lava emplacement and thermal erosion at Perseverance, Western Australia; J. Volcanol. Geotherm. Res. 110 27–55.

    Google Scholar 

  • Windrim D P, McCulloch M T, Chappell B W and Cameron W E 1984 Nd isotopic systematics and chemistry of Central Australian Sapphirine granulites: An example of rare earth element mobility; Earth Planet. Sci. Lett. 70 27–39.

    Google Scholar 

  • Wood S A 1990 The aqueous geochemistry of the rare earth elements and yttrium, 1. Review of available low temperature data of inorganic complexes and the inorganic speciation of natural waters; Chem. Geol. 82 159–186.

    Google Scholar 

  • Wyman D and Hollings P 2015 Long-lived mantle–plume influence on an Archean protocontinent: Geochemical evidence from the 3 Ga Lumby Lake greenstone belt, Ontario, Canada; Geology 26 719–722.

    Google Scholar 

  • Zachariah J K, Hanson G N and Rajamani V 1995 Post crystallization disturbance in the neodymium and lead isotope systems of metabaslts from the Ramagiri Schist belt, south India; Geochim. Cosmochim. Acta 59 3189–3203.

    Google Scholar 

  • Zhang J and Herzberg C 1994 Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa; J. Geophys. Res. 99 17729–17742.

    Google Scholar 

  • Zhang Y–S and Tanimoto T 1992 Ridges, hotspots and their interaction as observed in seismic velocity maps; Nature 355 45–49.

    Google Scholar 

  • Zhang Z, Mao J, Saunders A D, Ai Y, Li Y and Zhao L 2009 Petrogenetic modelling of three mafic–ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints; Lithos 113 369–392.

    Google Scholar 

  • Zhou S, Polat A, Longstaffe F J, Yang K G, Fryer B J and Weisener C 2016 Formation of the Neoarchean Bad Vermilion Lake Anorthosite Complex and spatially associated granitic rocks at a convergent plate margin, Superior Province, Western Ontario, Canada; Gondwana Res. 33 134–159.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support given by Mr. Nibin Tom, Superintending Geologist, Geological Survey of India, during the field work and lengthy discussions with him. KP acknowledges the Junior Research Fellowship provided by IIT (ISM) Dhanbad. Laboratory support extended by NCESS, Thiruvananthapuram is also acknowledged. The laboratory facilities in the Department of Applied Geology, IIT(ISM), funded through DST FIST Level II project No. SR/FST/ESII-014/2012(C), are also acknowledged. Excellent inputs from an anonymous reviewer had improved the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Anand.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, K., Anand, R., Balakrishnan, S. et al. Geochemistry of ultramafic–mafic rocks of Mesoarchean Sargur Group, western Dharwar craton, India: Implications for their petrogenesis and tectonic setting. J Earth Syst Sci 129, 26 (2020). https://doi.org/10.1007/s12040-019-1269-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1269-4

Keywords

Navigation