Skip to main content

Advertisement

Log in

Source characteristics of the upper mantle 21 May, 2014 Bay of Bengal earthquake of \({{\varvec{M}}}_{\!{{\varvec{w}}}}\)5.9

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We measure source parameters for the 21 May, 2014 Bay of Bengal earthquake through inversion modeling of S-wave displacement spectra from radial–transverse–vertical (RTZ) components recorded at ten broadband stations in the eastern Indian shield. The average source parameters are estimated using estimates from seven near stations (within epicentral distances \({\le }500\,\hbox {km}\)). The average seismic moment and source radius are determined to be \(1.0{\times }10^{18}\,\hbox {N-m}\) and 829 m, respectively, while average stress drop is found to be 76.5 MPa. The mean corner frequency and moment magnitude are calculated to be \(1.6\pm 0.1\) and \(5.9\pm 0.2\) Hz, respectively. We also estimated mean radiated energy and apparent stress, which are found to be \(6.1{\times }10^{13}\) joules and 1.8 MPa, respectively. We observe that mean \(E_{s}/M_{o}\) estimate of \(5.5{\times }10^{-5}\) is found to be larger than the global average for oceanic strike-slip events. This observation along with large stress drop and apparent stress estimates explains the observed remarkably felt intensity data of the 2014 event. The full waveform moment tensor inversion of the band-passed (0.03–0.12 Hz) broadband displacement data suggests the best fit for the multiple point sources on a plane located at 65 km depth, with a moment magnitude 6.4, and a focal mechanism with strike \(318^{\mathrm{o}}\), dip \(87^{\mathrm{o}}\), and rake \(34^{\mathrm{o}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aki K 1965 Maximum likelihood estimate of b in the formula log N = a–b M and its confidence limits; B. Earthq. Res. I. Tokyo 43 237–239.

    Google Scholar 

  • Aki K and Richards P 1980 Quantitative Seismology; W H Freeman Publishers, New York, 932p.

    Google Scholar 

  • Archuleta R J, Cranswick E, Muellar C and Spudich P 1982 Source parameters of the 1980 Mammoth lakes, California, Earthquake sequence; J. Geophys. Res. 87 4595–4607.

    Article  Google Scholar 

  • Berteusen K A 1977 Moho depth determinations based on spectral ratio analysis of NORSAR long-period P waves; Phys. Earth Planet Int. 31 313–326.

    Google Scholar 

  • Boatwright J 1980 A spectral theory for circular seismic sources: Simple estimates of source dimension, dynamic stress drop and radiated energy; Bull. Seismol. Soc. Am. 70 1–27.

    Google Scholar 

  • Bouchon M 1981 A simple method to calculate Green’s functions for elastic layered media; Bull. Seismol. Soc. Am. 71 959–971.

    Google Scholar 

  • Brune J N 1970 Tectonic stress and the spectra of seismic shear waves from earthquakes; J. Geophys. Res. 75 4997–5009.

    Article  Google Scholar 

  • Chamot-Rooke N and LePichon X 1989 Zenisu ridge: Mechanical model of formation; Tectonophys. 160 175–193.

    Article  Google Scholar 

  • Choy G L and Boatwright J L 1995 Global patterns of radiated seismic energy and apparent stress; J. Geophys. Res. 100 18,205–18,228.

    Article  Google Scholar 

  • Choy L G 2011 Stress conditions inferable from modern magnitudes: Development of a model of fault maturity; In: New Manual of Seismological Observatory Practice-2 (ed.) Bormann P, https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.5.

  • Choy L G and McGaar A 2002 Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress; Geophys. J. Int. 150 506–523.

    Article  Google Scholar 

  • Choy L G, McGarr A, Kirby S H and Boatwright J 2006 An overview of the global variability in radiated energy and apparent stress; In: Earthquakes: Radiated Energy and the Physics of Faulting (eds) Abercrombie R, McGarr A, Toro G D and Kanamori H, Geophysical Monograph Series 170 43–57.

  • Cohn S N, Hong T L and Helmberger D V 1982 The Oroville earthquakes: A study of source characteristics and site effects;J. Geophys. Res. 87 4585–4594.

    Article  Google Scholar 

  • Coutant O 1989 Program of Numerical Simulation AXITRA; Research report, Laboratoire de Ge’ophysique Interne et Tectonophysique, Grenoble.

  • Dimri V P 1992 Deconvolution and inverse theory: Application to geophysical problems; Elsevier Science Publishers, Amsterdam, 230p.

    Google Scholar 

  • Fletcher J B 1980 Spectra from high dynamic range digital recordings of Oroville, California aftershocks and their source parameters; Bull. Seismol. Soc. Am. 70 735–755.

    Google Scholar 

  • Fletcher J B 1995 Source parameters and crustal Q for four earthquakes in South Carolina; Seismol. Res. Lett. 66 44–58.

    Article  Google Scholar 

  • Hanks T C and Kanamori H 1979 A moment magnitude scale; J. Geophys. Res. 84 2348–2350.

    Article  Google Scholar 

  • Kennett B L N and Engdahl E R 1991 Travel times for global earthquake location and phase identification; Geophys. J. Int. 105 429–465, https://doi.org/10.1111/j.1365-246X.1991.tb06724.x.

    Article  Google Scholar 

  • Kikuchi M and Kanamori H 1991 Inversion of complex body waves, III; Bull. Seismol. Soc. Am. 81 2335–2350.

    Google Scholar 

  • Kohlstedt D L, Evans B and Mackwell S J 1995 Strength of the lithosphere: Constraints imposed by laboratory experiments; J. Geophys. Res. 100 17,587–17,602.

    Article  Google Scholar 

  • Kundu B and Gahalaut V K 2013 Tectonic geodesy revealing geodynamic complexity of the Indo-Burmese arc region, northeast India; Curr. Sci. 104(7) 920–933.

    Google Scholar 

  • Lahr J, Page R A and Stevens C D 1988 Unusual earthquakes in the Gulf of Alaska and fragmentation of the Pacific plate; Geophys. Res. Lett. 15 1483–1486.

    Article  Google Scholar 

  • Langston C A and Helmberger D V 1975 A procedure for modeling shallow dislocation sources; Geophys. J. R. Astr. Soc. 42 117–130.

    Article  Google Scholar 

  • Mandal P and Biswas K 2015 Teleseismic receiver function imaging of the eastern Indian shield: Evidences of age-dependent crustal thicknesses, submitted to Tectonophysics (Personal Communication).

  • Mandal P and Dutta U 2011 Estimation of earthquake source parameters and site response; Bull. Seismol. Soc. Am. 101(4) 1719–1731.

    Article  Google Scholar 

  • Mandal P, Chadha R K, Kumar N, Raju I P and Satyamurty C 2007 Source parameters of the deadliest 8th October, 2005 Kashmir earthquake of M\(_{{\rm w}}\)7.6; Pure Appl. Geophys. 164 1963–1983.

  • Martin S S and Hough S E 2015 The 21 May, 2014 M\(_{{\rm w}}\)5.9 Bay of Bengal earthquake: macroseismic data suggest a high-stress-drop event; Seismol. Res. Lett. 86 369–377, https://doi.org/10.1785/0220140155.

    Article  Google Scholar 

  • Martin S S and Kakar D M 2012 The 19 January 2011 \(M_{w}\)7.2 Dalbandin earthquake, Balochistan; Bull. Seismol. Soc. Am. 102 1810–1819, https://doi.org/10.1785/0120110221.

    Article  Google Scholar 

  • McKenzie D, Jackson J and Priestley K 2005 Thermal structure of oceanic and continental lithosphere; Earth Planet. Sci. Lett. 233 337–349.

    Article  Google Scholar 

  • Neprechnov Y P, Levchenko O V, Merklin L R and Sedov V V 1988 The structure and tectonics of the intraplate deformation area in the Indian Ocean; Tectonophys. 156 89–106.

    Article  Google Scholar 

  • Orowan E 1960 Mechanism of seismic faulting; Geol. Soc. Am. Mem. 79 323–345.

    Google Scholar 

  • Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in C: The Art of Scientific Computing; Cambridge University Press, New York, 345p.

    Google Scholar 

  • Rao G, Radhakrishna M and Murthy K 2015a A seismotectonic study of the 21 May, 2014 Bay of Bengal intraplate earthquake: Evidence of onshore–offshore tectonic linkage and fracture zone reactivation in the northern Bay of Bengal; Nat. Hazards 78 895–913.

    Article  Google Scholar 

  • Rao N Ch, Rao N P, Ravi Kumar M, Prasanna S and Srinagesh D 2015b Structure and tectonics of the Bay of Bengal through waveform modelling of the 21 May, 2014 earthquake of magnitude 6.0; Seismol. Res. Lett. 86 1–7, https://doi.org/10.1785/0220140166.

    Article  Google Scholar 

  • Singh S K and Pacheco J F 1994 Magnitude determination of Mexican Earthquakes; Geofisica Int. 33(2) 189–198.

    Google Scholar 

  • Singh S K, Garcia D, Pacheco J F, Valenzuela R, Bansal B K and Dattatrayam R S 2004 Q of the Indian Shield; Bull. Seismol. Soc. Am. 94(4) 1564–1570.

    Article  Google Scholar 

  • Singh S K, Hjorleifsdottir V, Suresh G, Srinagesh D, Chadha R K and Perez-Campos X 2015 Bay of Bengal earthquake of 21 May, 2014 (M\(_{{\rm w}}\)6.1): Source depth and ground motions; Seismol. Res. Lett. 86, https://doi.org/10.1785/0220140238.

  • Sokos E N and Zahradník J 2008 ISOLA a FORTRAN code and a MATLAB GUI to perform multiple-point source inversion of seismic data; Comput. Geosci. 34 967–977.

    Article  Google Scholar 

  • Sokos E N and Zahradník J 2013 Evaluating Centroid–Moment–Tensor uncertainty in the new version of ISOLA software; Seismol. Res. Lett. 84(4) 656–664, https://doi.org/10.1785/0220130002.

    Article  Google Scholar 

  • Tesauro M, Kaban M K and Cloetingh S A P L 2012 Global strength and elastic thickness of the lithosphere; Glob. Planet. Change 90 51–57.

    Article  Google Scholar 

  • Trifunac M D and Brady A G 1975 A study on the duration of strong earthquake ground motion; Bull. Seismol. Soc. Am. 65 581–626.

    Google Scholar 

  • Wang K, He J and Davis E E 1997 Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate; J. Geophys. Res. 102 661–674.

    Article  Google Scholar 

  • Wiens D 2001 Seismological constraints on the mechanism of deep earthquakes: Temperature dependence of deep earthquake source properties; Phys. Earth Planet. Int. 127 145–163.

    Article  Google Scholar 

  • Wells D L and Coppersmith K J 1994 New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement; Bull. Seismol. Soc. Am. 84 974–1002.

    Google Scholar 

  • Zahradnik J, Serpetsidaki A, Sokos E and Tselentis G A 2005 Iterative deconvolution of regional waveforms and a double-event interpretation of the 2003 Lefkada earthquake, Greece; Bull. Seismol. Soc. Am. 95(1) 159–172.

    Article  Google Scholar 

  • Zuniga F R 1993 Frictional overshoot and partial stress drop, which one?; Bull. Seismol. Soc. Am. 83 939–944.

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Director, NGRI, Hyderabad, for his kind permission to publish this work. This study is supported by the Council of Scientific and Industrial Research (CSIR) 12th five year plan project (Index) at the CSIR–National Geophysical Research Institute, Hyderabad. The authors are thankful to Prof J Zahradink of Charles University, Prague, Czech Republic for providing ISOLA software code used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prantik Mandal.

Additional information

Corresponding editor: M Radhakrishna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P., Biswas, K. & Prasad, A. Source characteristics of the upper mantle 21 May, 2014 Bay of Bengal earthquake of \({{\varvec{M}}}_{\!{{\varvec{w}}}}\)5.9. J Earth Syst Sci 128, 8 (2019). https://doi.org/10.1007/s12040-018-1027-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-1027-z

Keywords

Navigation