Skip to main content
Log in

Fluid inclusion, geochemical, Rb–Sr and Sm–Nd isotope studies on tungsten mineralized Degana and Balda granites of the Aravalli craton, NW India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Granitic plutons occurring within and to the west of the Delhi Fold Belt in the Aravalli craton, northwestern India are the result of widespread felsic magmatism during Neoproterozoic, some of which are associated with greisen and skarn tungsten deposits. In this paper, we present the result of our study on fluid inclusions, geochemistry and geochronology of two such tungsten mineralized granite plutons at Degana and Balda, and interpret the nature of ore fluid, and petrogenesis and age of these mineralized granites. Fluid inclusion study reveals coexistence of moderate and hyper-saline aqueous fluid inclusions along with aqueous-carbonic inclusions, suggesting their origin due to liquid immiscibility during fluid–rock interaction. Geochemically, the granites are peraluminous, Rb enriched, Sr and Ba depleted and highly differentiated. The Rb–Sr isotopic systematics yielded \(795\pm 11\) Ma for Balda granite and \(827\pm 8\) Ma for Degana granite. We show that major phase of widespread granitoid magmatism and mineralization during the Neoproterozoic (840–790 Ma) in NW India is coeval with breakup of the Rodinia supercontinent and infer a causal relationship between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anand R and Balakrishnan S 2010 Pb, Sr and Nd isotope systematics of metavolcanic rocks of the Hutti greenstone belt, Eastern Dharwar craton: Constraints on age, duration of volcanism and evolution of mantle sources during Late Archean; J. Asian Earth Sci. 39 1–11.

    Article  Google Scholar 

  • Arif M, Nitnaware N V, Mahapatro S N, Baswani S R, Powar R R, Sridhar M and Dora M L 2017 Tungsten mineralisation in Lawari-Amboli area, Chandrapur District, Maharashtra, Western Bastar Craton; J. Geosci. Res. 1 73–80.

    Google Scholar 

  • Arth J G 1976 Behavior of trace elements during magmatic processes: A summary of theoretical models and their applications; J. Res. US Geol. Sur. (United States) 4 41–47.

    Google Scholar 

  • Ashwal L, Demaiffe D and Torsvik T 2002 Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: The case for an Andean-type arc origin; J. Petrol. 43 45–83.

    Article  Google Scholar 

  • Ashwal L, Solanki A, Pandit M, Corfu F, Hendriks B, Burke K and Torsvik T 2013 Geochronology and geochemistry of Neoproterozoic Mt. Abu granitoids, NW India: Regional correlation and implications for Rodinia paleogeography; Precamb. Res. 236 265–281.

    Article  Google Scholar 

  • Banerjee G, Mukhopadhyay A and Singhai R 1979 Tungsten mineralisation of Sirohi district, Rajasthan; In: Proceedings of Workshop on Mineralization Associated with Acid Magmatism, IGCP.

  • Banerji S and Pandit M K 1995 Lithium and tungsten mineralization in Sewariya pluton, South Delhi Fold Belt, Rajasthan: Evidences for preferential host rock affinity; Curr. Sci. 69 252–256.

    Google Scholar 

  • Bhattacharjee J, Fareeduddin and Jain S S 1993 Tectonic setting, petrochemistry and tungsten metallogeny of the Sewariya granite in the South Delhi Fold Belt, Rajasthan; J. Geol. Soc. India 42 3–16.

    Google Scholar 

  • Bhoskar K G and Chande V D 1983 Tugsten mineralization Sakoli Group; Geol. Surv. India Spec. Publ. 13 138–144.

    Google Scholar 

  • Bhushan S 2000 Malani rhyolites – a review; Gondwana Res. 3 65–77.

    Article  Google Scholar 

  • Buhn B and Stanistreet I G 1997 Insight into the enigma of Neoproterozoic manganese and iron formations from the perspective of supercontinental break-up and glaciation; Geol. Soc. London Spec. Publ. 119(1) 81–90.

    Article  Google Scholar 

  • Black L P et al. 1997 Dating Tasmania’s oldest geological events; AGSO Rec. 15 57.

    Google Scholar 

  • Chappell B W and White A J R 1974 Two contrasting granite types; Pac. Geol. 8 173–174.

    Google Scholar 

  • Chattopadhyay B, Mukhopadhyay K, Singhai R K, Bhattacharjee J and More M K 1982 Post-Erinpura acid magmatism in Sirohi Rajasthan and its bearing on tungsten mineralization; In: Proc. Symp. Metall. Precambrian, IGCP Proj. 91 115–132.

  • Chattopadhyay B, Chattopadhyay S and Bapna V S 1994 Geology and geochemistry of Degana Pluton – a Proterozoic rapakivi granite in Rajasthan, India; Min. Petrol. 50 69–82.

    Article  Google Scholar 

  • Chemale Jr F, Scheepers R, Gresse P G and Van Schmus W R 2011 Geochronology and sources of Late Neoproterozoic to Cambrian granites of the Saldania Belt; Int. J. Earth Sci. 100(2) 431–444.

    Article  Google Scholar 

  • Choudhry A, Gopalan K and Sastry C A 1984 Present status of the geochronology of the Precambrian rocks of Rajasthan; Tectonophys. 105 131–140.

    Article  Google Scholar 

  • Collins A S 2006 Madagascar and the amalgamation of Central Gondwana; Gondwana Res. 9 3–16.

    Article  Google Scholar 

  • Collins A S and Windley B F 2002 The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana; J. Geol. 110 325–340.

    Article  Google Scholar 

  • Crawford A R and Compston W 1970 The age of the Vindhyan System of peninsular India; Quart. J. Geol. Soc. London 125 351–377.

    Article  Google Scholar 

  • Deb M, Thorpe R, Cumming G and Wagner P 1989 Age, source and stratigraphic implications of Pb isotope data for conformable, sediment-hosted, base metal deposits in the Proterozoic Aravalli–Delhi orogenic belt, northwestern India; Precamb. Res. 43 1–22.

  • DePaolo D J 1981 Neodymium isotopes in the Colorado Front Range and crust and mantle evolution in the Proterozoic; Nature 291 193–196.

    Article  Google Scholar 

  • Drake K M 1981 Geochemistry of tin, tungsten and molybdenum in Swedish Proterozoic granitoids; its potential use in regional mineral exploration; Ph.D. Thesis, Medd. Stockholm Univ. Geol. Inst 249 106p.

  • El-Bousely A M and El Sokkary A A 1975 The relation between Rb, Ba and Sr in granitic rocks; Chem. Geol. 16 207–219.

    Article  Google Scholar 

  • Flinter B H, Hesp W R and Rigby D 1972 Selected geochemical and petrological features of granitoids of New England Complex, Australia and their relation to Sn, W, MO and Cu mineralization; Econ. Geol. 67 1241–1262.

    Article  Google Scholar 

  • Fogliata A S, Báez M A, Hagemann S G, Santos J O and Sardi F 2012 Post-orogenic, Carboniferous granite-hosted Sn–W mineralization in the Sierras Pampeanas Orogen, Northwestern Argentina; Ore Geol. Rev. 45 16–32.

    Article  Google Scholar 

  • Giggenbach W 1997 The origin and evolution of fluids in magmatic-hydrothermal systems; In: Geochemistry of Hydrothermal Ore Deposits, Jhon Wiley & Sons.

  • Gregory L C, Meert J G, Bingen B, Pandit M K and Torsvik T H 2009 Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana; Precamb. Res. 17 13–26.

    Article  Google Scholar 

  • Gupta S N, Arora Y K, Mathur R K, Iqbaluddin Prasad B, Sahai T N and Sharma S B 1980 Lithostratigraphic Map of Aravalli Region (1:1000,000); Geol. Surv. India.

  • Gupta S N, Arora Y K, Mathur R K, Iqbaluddin Prasad B, Sahai T N and Sharma S B 1997 The Precambrian geology of the Aravalli region, southern Rajasthan and northern Gujarat; Geol. Surv. India Memoir 123 262.

    Google Scholar 

  • Handke M J, Tucker R D and Ashwal L D 1999 Neoproterozoic continental arc magmatism in west-central Madagascar; Geology 27 351–354.

    Article  Google Scholar 

  • Heron A M 1953 The geology of central Rajputana; Geol. Surv. India Memoir 79 389p.

  • Huang L C and Jiang S Y 2014 Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, southeast China: Geochronology, petrogenesis and their relationship with W-mineralization; Lithos 202 207–226.

    Article  Google Scholar 

  • Ito E, White W M and Gopel C 1987 The O, Sr, Nd and Pb isotope geochemistry of MORB; Chem. Geol. 62 157–176.

    Article  Google Scholar 

  • Jain S S and Mohan M 1987 Prospecting for Tungsten for Kuhi-Khobhna, Maharashtra; In: Proceedings of National Workshop on Tugnsten, pp. 23–31.

  • Jenkin G R T, Ellam R M, Rogers G and Stuart F M 2001 An investigation of closure temperature of the biotite Rb–Sr system: The importance of cation exchange; Geochim. Cosmochim. Acta 65 1141–1160.

    Article  Google Scholar 

  • Jin Yang Yi, Guang Zhu Wei, Jie Bai Zhong, ZhongHong, Tao Ye Xian and Peng Fan Hong 2016 Petrogenesis and tectonic implications of the Neoproterozoic Datian mafic–ultramafic dykes in the Panzhihua area, western Yangtze Block, SW China; Int. J. Earth Sci. 106(1) 1–29.

  • Just J, Schulz B, de Wall H, Jourdan F and Pandit M K 2011 Monazite CHIME/EPMA dating of Erinpura granitoid deformation: Implications for Neoproterozoic tectono-thermal evolution of NW India; Gondwana Res. 19(2) 402–412.

    Article  Google Scholar 

  • Krylova T et al. 2012 Degana (Rajasthan, India) and Tigrinoe (Primorye, Russia) tungsten and tin-tungsten deposits: Composition of mineral-forming fluids and conditions of wolframite deposition; Geol. Ore Dep. 54(4) 276–294.

    Article  Google Scholar 

  • Lehmann B 1987 Tin granites, geochemical heritage, magmatic differentiation; Geol. Rund. 76 177–185.

    Article  Google Scholar 

  • Li X I et al. 2008 Assembly, configuration, and break-up history of Rodinia; A synthesis; Precamb. Res. 160 179–210.

    Article  Google Scholar 

  • Li Z X, Li X, Kinny P, Wang J, Zhang S and Zhou H 2003 Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia; Precamb. Res. 122 85–109.

    Article  Google Scholar 

  • Ludwig K R 2008 User’s Manual for Isoplot/Ex Rev. 2.49. A geochronological tool kit for Microsoft Excel; Berkely Geochronology Center Special Publication. No. 1a, 2455 Ridge Road, Berkely, CA 94709, USA.

  • Maheshwari A, Sial A, Coltorti M, Chittora V and Cruz M J 2001 Geochemistry and petrogenesis of Siwana peralkaline granites, West of Barmer, Rajasthan, India; Gondwana Res. 4 87–95.

    Article  Google Scholar 

  • MacDougall J D, Gopalan K, Lugmair G and Roy A 1983 The Banded Gneissic Complex of Rajasthan, India: Early crust from depleted mantle at 3.5 AE; EOS Trans. Am. Geophys. 64 351.

  • Meert J G and Lieberman B S 2008 The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation; Gondwana Res. 14 5–21.

    Article  Google Scholar 

  • Meert J G 2001 Growing Gondwana and rethinking Rodinia; Gondwana Res. 4 279–288.

    Article  Google Scholar 

  • Meert J G 2003 A synopsis of events related to the assembly of East Gondwana; Precamb. Res. 362 1–40.

    Google Scholar 

  • Miyazaki T, Kagami H, Shuto K, Morikiyo T, Mohan V R and Rajasekaran C 2000 Rb–Sr geochronology, Nd–Sr isotopes and whole rock geochemistry of Yelagiri and Sevattur syenites, Tamil Nadu, south India; Gondwana Res. 3 39–53.

    Article  Google Scholar 

  • Moniar P D and Piccoli P M 1989 Tectonic discrimination of granitoids; Geol. Soc. Am. 101 635–643.

    Article  Google Scholar 

  • Nebel O and Mezger K 2008 Timing of thermal stabilization of Zimbabwe craton deduced from high-precision Rb–Sr chronology, Great Dyke; Precamb. Res. 164 227–232.

    Article  Google Scholar 

  • Nebel O, Scherer E E and Mezger K 2011 Evaluation of the \(^{87}\)Rb decay constant by age comparison against the U–Pb system; Earth Planet. Sci. Lett. 301 1–8.

    Article  Google Scholar 

  • Neiva A M R 1984 Geochemistry of tin-bearing granitic rocks; Chem. Geol. 43 241–256.

    Article  Google Scholar 

  • Ohlander B 1985 Geochemical characteristics of granites associated with Proterozoic molybdenite mineralization in northern Sweden; Chem. Geol. 51 247–263.

    Article  Google Scholar 

  • Pandian M S 1999 Late Proterozoic acid magmatism and associated tungsten mineralization in NW India; Gondwana Res. 2 79–87.

    Article  Google Scholar 

  • Pandian M S and Dutta S K 2000 Leucogranite magmatism in Sewariya-Govindgarh areas of Rajasthan and its relevance to tungsten mineralization; J. Geol. Soc. India 55 289–295.

    Google Scholar 

  • Pandian M S and Varma O P 2001 Geology and geochemistry of topaz granite and associated wolframite deposit at Degana, Rajasthan; J. Geol. Soc. India 57 297–307.

    Google Scholar 

  • Pandit M K, Carter L M, Ashwal L D, Tucker R D, Torsvik T H, Jamtveit B and Bhushan S K 2003 Age, petrogenesis and significance of 1 Ga granitoids and related rocks from the Sendra area, Aravalli Craton, NW India; J. Asian Earth Sci. 22 363–381.

    Article  Google Scholar 

  • Pearce J A and Norry M J 1979 Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks; Contrib. Mineral. Petrol. 69 33–47.

    Article  Google Scholar 

  • Pearce J A, Harris N B and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25(4) 956–983.

    Article  Google Scholar 

  • Pradhan V R, Meert J G, Pandit M K, Kamenov G, Gregory L C and Malone S J 2010 India’s changing place in global Proterozoic reconstructions: A review of geochronologic constraints and paleomagnetic poles from the Dharwar, Bundelkhand and Marwar cratons; J. Geodyn. 50 224–242.

    Article  Google Scholar 

  • Pirajno F 2009 Hydrothermal Processes and Mineral Systems, Springer, 1250p.

  • Preiss W V 2000 The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction; Precamb. Res. 100 21–63.

    Article  Google Scholar 

  • Preiss W V, Walter M R, Coats R P and Wells A T 1978 Lithological correlations of the Adelaidean glaciogenic rocks in parts of the Amadeus, Ngalia and Georgina Basins; BMR. J. Aus. Geol. Geophys. 3 43–53.

    Google Scholar 

  • Radhakrishna T and Mathew J 1996 Late Precambrian (850–800 Ma) palaeomagnetic pole for the south Indian shield from the Harohalli alkaline dykes: Geotectonic implications for Gondwana reconstructions; Precamb. Res. 80 77–87.

    Article  Google Scholar 

  • Robey J V A, Bristow J W, Marx M R, Joyce J, Danchin R V and Arnott F 1989 Alkaline ultrabasic dikes near Norseman, Western Australia; In: Kimberlites and Related Rocks Volume 1: Their Composition, Occurrence, Origin and Emplacement (eds) Ross J et al., Geol. Soc. Aust. Spec. Publ., Blackwell Scientific Publications, Carlton, pp. 383–391.

  • Roedder E 1971 Metastability in fluid inclusions; Soc. Min. Geol. Japan 3 321–334.

    Google Scholar 

  • Rollinson H 1993 Using Geochemical Data – Evolution, Presentation, Interpretation; Longman, Singapore, pp. 110–112.

    Google Scholar 

  • Roy A 1988 Stratigraphic and tectonic framework of the Aravalli mountain Range; Geol. Soc. India Memoir 7 3–31.

    Google Scholar 

  • Saha A K and Mohan M 2000 Geological and genetic aspects of Tungsten mineralization in Sakoli supracrustals; Ind. Mineral. 54(1) 35–42.

    Google Scholar 

  • Santosh M, Iyer S S, Vasconcellos M B A and Enzweiler J 1989 Late Precambrian alkaline plutons in SW India: Geochronologic and rare-earth elements constraints on Pan-African magmatism Lithos 24 65–79.

    Article  Google Scholar 

  • Sarkar G, Ray Burman T and Corfu F 1989 Timing of continental arc magmatism in NW India: Evidence from U–Pb geochronology; J. Geol. 97 607–612.

  • Sharma K K 2004 The Neoproterozoic Malani magmatism of the northwestern Indian shield: Implications for crust building processes; J. Earth Syst. Sci. 113 795–807.

  • Sharma R, Banerji S and Pandit M K 2003 W mineralization in Sewaria area, South Delhi Fold Belt, Northwestern India: Fluid Inclusion Evidence for tungsten transport and conditions of ore formation; J. Geol. Soc. India 61 37–50.

    Google Scholar 

  • Singh S K and Singh S 1997 Geochemical characteristics of post-magmatic alteration and tungsten mineralization associated with Balda granite, district Sirohi, Rajasthan; J. Geol. Soc. India 50 475–479.

    Google Scholar 

  • Singh S K and Singh S 2001 Geochemistry and tungsten metallogeny of the Balda Granite, Rajasthan, India; Gondwana Res. 4 487–495.

    Article  Google Scholar 

  • Srivastava P K and Sinha A K 1997 Geochemical characterization of tungsten-bearing granites from Rajasthan, India; J. Geochem. Exp. 60 173–184.

    Article  Google Scholar 

  • Streckeisen A 1974 Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of igneous rocks; Geol. Rund. 63(2) 773–786.

    Article  Google Scholar 

  • Tauson L and Kozlov V 1973 Distribution functions and ratios of trace-element concentrations as estimators of the ore-bearing potential of granites; J. Geochem. Exp. London, Inst. Min. Metall., pp. 37–44.

  • Tischendorf G 1977 Geochemical and petrographic criteria of silicic magmatic rocks associated with rare metal mineralisation; In: Metallization Associated with Acid Magmatism (eds) Stemprok M, Ustredni Ustiv. Geol. Prague 2 41–96.

  • Tobisch O T, Collerson K D, Bhattacharya T and Mukhopadhyay D 1994 Structural relationship and Sm–Nd isotope systematic of polymetamorphic granitic gneisses and granitic rocks from central Rajasthan, India: Implications for evolution of the Aravalli craton; Precamb. Res. 65 319–339.

    Article  Google Scholar 

  • Torsvik T H, Ashwal L D, Tucker R D and Eide E A 2001a Neoproterozoic geochronology and palaeogeography of the Seychelles micro-continent: The India link; Precamb. Res. 110 47–59.

    Article  Google Scholar 

  • Torsvik T H, Carter L M, Ashwal L D, Bhushan S K, Pandit M K and Jamtveit B 2001b Rodinia refined or obscured; palaeomagnetism of the Malani Igneous Suite (NW India); Precamb. Res. 108 319–333.

    Article  Google Scholar 

  • Tucker R D, Ashwal L D and Torsvik T H 2001 U–Pb geochronology of Seychelles granitoids: A Neoproterozoic continental arc fragment; Earth Planet. Sci. Lett. 187 27–38.

    Article  Google Scholar 

  • Turner N J, Black L P and Kamperman M 1998 Dating of Neoproterozoic and Cambrian orogenies in Tasmania; Austr. J. Earth Sci. 45 789–806.

  • Van Lente B, Ashwal L D, Pandit M K, Bowring S A and Torsvik T H 2009 Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for Late Precambrian tectonic evolution of the Aravalli Craton; Precamb. Res. 170 202–222.

    Article  Google Scholar 

  • Vijay Anand S, Pandian M S and Krylova T 2010 Fluid Inclusions in Wolframite-Bearing Veins at Degana and Balda Greisens Tungsten Deposits, Rajasthan, India; In: 3rd Biennial ACROFI-III Conference, Novosibirsk, pp. 254–255.

  • Walter M R and Veevers J J 1997 Australian Neoproterozoic palaeogeography, tectonics, and supercontinental connections; J. Austr. Geol. Geophys. 17 73–92.

    Google Scholar 

  • Wang J and Li Z X 2003 History of Neoproterozoic rift basins in South China: Implications for Rodinia breakup; Precamb. Res. 122 141–158.

    Article  Google Scholar 

  • Willigers B J A, Mezger K and Baker J A 2004 Development of high precision Rb–Sr phlogopite and biotite geochronology; an alternative to \(^{40} \text{ Ar }/^{39}\text{ Ar }\) trioctahedral mica dating; Chem. Geol. 213 339–358.

    Article  Google Scholar 

  • Windley B F, Razafiniparany A, Razakamanana T and Ackermand D 1994 Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: A review and reappraisal; Int. J. Earth Sci. 83(3) 642–659.

    Google Scholar 

  • Wingate M T and Giddings J W 2000 Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: Implications for an Australia–Laurentia connection at 755 Ma; Precamb. Res. 100 335–357.

    Article  Google Scholar 

  • Winter J D 2001 An Introduction to Igneous and Metamorphic Petrology; Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Xie L, Wang R C, Chen J, Zhu J C, Zhang W L, Wang D Z and Yu A P 2009 Primary Sn rich titianite in the Qitianling granite, Hunan Province, southern China: An important type of tin-bearing mineral and its implications for tin exploration; Chinese Sci. Bull. 54 798–805.

    Google Scholar 

  • Zacharia Z K 1996 Geochemistry and petrogenesis of amphibolite of Ramagiri gold fields, South India; Unpublished Ph.D thesis, JNU, New Delhi.

  • Zhao Z H, Bao Z W, Zhang B Y and Xiong X L 2001 Crust–mantle interaction and its contribution to the Shizhuyuan superlarge tungsten polymetallic mineralization; Sci. China Ser. D Earth Sci. 44 266–276.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DST projects SR/S4/ES-121/2004 and ESS/23/IRPHA/03/2000, and by DST-FIST Program and UGC-SAP (DRS-1) to the Department of Earth Sciences, Pondicherry University. The authors are thankful to the reviewers for constructive comments and advices are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarrajan Vijay Anand.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay Anand, S., Pandian, M.S., Balakrishnan, S. et al. Fluid inclusion, geochemical, Rb–Sr and Sm–Nd isotope studies on tungsten mineralized Degana and Balda granites of the Aravalli craton, NW India. J Earth Syst Sci 127, 52 (2018). https://doi.org/10.1007/s12040-018-0953-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0953-0

Keywords

Navigation