Skip to main content

Advertisement

Log in

Ocean sea-ice modelling in the Southern Ocean around Indian Antarctic stations

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

An eddy-resolving coupled ocean sea-ice modelling is carried out in the Southern Ocean region (9\(^{\circ }\)–78\(^{\circ }\)E; 51\(^{\circ }\)–71\(^{\circ }\)S) using the MITgcm. The model domain incorporates the Indian Antarctic stations, Maitri (11.7\({^{\circ }}\)E; 70.7\({^{\circ }}\)S) and Bharati (76.1\({^{\circ }}\)E; 69.4\({^{\circ }}\)S). The realistic simulation of the surface variables, namely, sea surface temperature (SST), sea surface salinity (SSS), surface currents, sea ice concentration (SIC) and sea ice thickness (SIT) is presented for the period of 1997–2012. The horizontal resolution of the model varies between 6 and 10 km. The highest vertical resolution of 5 m is taken near the surface, which gradually increases with increasing depths. The seasonal variability of the SST, SSS, SIC and currents is compared with the available observations in the region of study. It is found that the SIC of the model domain is increasing at a rate of 0.09% per month (nearly 1% per year), whereas, the SIC near Maitri and Bharati regions is increasing at a rate of 0.14 and 0.03% per month, respectively. The variability of the drift of the sea-ice is also estimated over the period of simulation. It is also found that the sea ice volume of the region increases at the rate of 0.0004 \(\hbox {km}^{3}\) per month (nearly 0.005 \(\hbox {km}^{3}\) per year). Further, it is revealed that the accumulation of sea ice around Bharati station is more as compared to Maitri station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Bader J, Flugge M, Kvamsto N G, Mesquita M D and Voigt A 2013 Atmospheric winter response to a projected future Antarctic sea-ice reduction: A dynamical analysis; Clim. Dyn. 40 2707–2718.

    Article  Google Scholar 

  • Balmaseda M A, Mogensen K and Weaver A T 2013 Evaluation of the ECMWF ocean reanalysis system ORAS4; Quart. J. Roy. Meteorol. Soc. 139 1132–1161.

    Article  Google Scholar 

  • Bitz C M, Gent P R, Woodgate R A, Holland M M and Lindsay R 2006 The influence of sea ice on ocean heat uptake in response to increasing CO\(_{2}\); J. Climate 19 2437–2450.

    Article  Google Scholar 

  • Boyer T P, Antonov J I, Baranova O K, Garcia H E, Johnson D R, Locarnini R A, Mishonov A V, Seidov D, Smolyar I V and Zweng M M 2009 World Ocean Database 2009, Chap. 1: Introduction, NOAA Atlas NESDIS 66 (ed.) Levitus S, U.S. Gov. Printing Office 216.

  • Campin J M, Marshall J and Ferreira D 2008 Sea ice–ocean coupling using a rescaled vertical coordinate z; Ocean Model. 24 1–4.

    Article  Google Scholar 

  • Cavalieri D J, Parkinson C L, Gloersen P and Zwally H J 1996 Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, NASA National Snow and Ice Data Center Distributed Active Archive Center at Boulder, Colorado USA, doi: 10.5067/8GQ8LZQVL0VL.

  • Cavalieri D J, Parkinson C L and Vinnikov K Y 2003 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability; Geophys. Res. Lett. 30 1970, doi: 10.1029/2003GL018031.

  • Fichefet T, Goosse H and Maqueda M A M 2003 A hind cast simulation of Arctic and Antarctic sea ice variability, 1955–2001; Polar Res. 22 91–98.

    Google Scholar 

  • Fichefet T, Tartinville B and Goosse H 2003 Antarctic sea ice variability during 1958–1999: A simulation with a global ice-ocean model; J. Geophys. Res. Oceans 108(C3) 3102, doi: 10.1029/2001JC001148.

    Article  Google Scholar 

  • Fletcher J O 1969 Ice extent in the southern oceans and its relation to world climate; J. Glaciol. 15 417–427.

    Google Scholar 

  • Grumbine R W 1994 A sea-ice albedo experiment with the NMC medium range forecast model; Wea. Forecasting 9 453–456.

    Article  Google Scholar 

  • Hellmer H H 2004 Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties; Geophys. Res. Lett. 31 L10307, doi: 10.1029/2004GL019506.

    Article  Google Scholar 

  • Holland P R, Bruneau N, Enright C, Losch M, Kurtz N T and Kwok R 2014 Modeled trends in Antarctic sea ice thickness; J. Climate 27 3784–3801.

    Article  Google Scholar 

  • Hunke E C, Lipscomb W H and Turner A K 2010 Sea-ice models for climate study: Retrospective and new directions; J. Glaciol. 56 1162–1172.

    Article  Google Scholar 

  • Jackett D R and Mcdougall T J 1995 Minimal adjustment of hydrographic profiles to achieve static stability; J. Atmos. Ocean. Tech. 12 381–389.

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J and Zhu Y 1996 The NCEP/NCAR 40-year reanalysis project; Bull. Am. Meteor. Soc. 77 437–471.

    Article  Google Scholar 

  • Kidston J, Taschetto A S, Thompson D W J and England M H 2011 The influence of Southern Hemisphere sea-ice extent on the latitude of the midlatitude jet stream; Geophys. Res. Lett. 38 L15804, doi: 10.1029/2011GL048056.

    Article  Google Scholar 

  • Köhl A 2015 Evaluation of the GECCO\(_2\) ocean synthesis: Transports of volume, heat and freshwater in the Atlantic; Quart. J. Roy. Meterol. Soc. 141(686) 166–181.

    Article  Google Scholar 

  • Kurtz N T and Markus T 2012 Satellite observations of Antarctic sea ice thickness and volume; J. Geophys. Res. 117 C08025, doi: 10.1029/2012JC008141.

    Article  Google Scholar 

  • Kusahara K, Hasumi H and Williams G D 2011 Dense shelf water formation and brine-driven circulation in the Adelie and George V Land region; Ocean Model. 37 122–138.

    Article  Google Scholar 

  • Large W G, McWilliams J C and Doney S C 1994 Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization; Rev. Geophys. 32 363–403.

    Article  Google Scholar 

  • Large W G and Pond S 1982 Sensible and latent heat flux measurements over the ocean; J. Phys. Oceanogr. 12 464–482.

    Article  Google Scholar 

  • Lemke P, Ren J, Alley R B, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas R H and Zhang T 2007 Observations: Changes in snow, ice and frozen ground; In: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp. 337–383, ISBN: 92-9169-121-6.

  • Li Q, Wu H and Zhang L 2013 Modelling seasonal variation of sea ice in Prydz Bay, Antarctica; Int. J. Offshore. Polar. 23 15–21.

    Google Scholar 

  • Lindsay R W and Zhang J 2005 The thinning of arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate 18 4879–4894.

    Article  Google Scholar 

  • Losch M, Menemenlis D, Campin J M, Heimbach P and Hill C 2010 On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations; Ocean Model. 33 129–144.

    Article  Google Scholar 

  • Lucas M, Gihwala K and Viskich M 2014 How are Antarctica and the Southern Ocean responding to climate change? Cover story; Quest 10 16–19.

    Google Scholar 

  • Mahlstein I, Gent P R and Solomon S 2013 Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations; J. Geophys. Res. Atmos. 118 5105–5110.

    Article  Google Scholar 

  • Marshall J, Olbers D, Ross H and Wolf-Gladrow D 1993 Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean; J. Phys. Oceanogr. 23 465–487.

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L and Heisey C 1997 A finite volume, incompressible Navier Stokes model for studies of the ocean on parallel computers; J. Geophys. Res. 102(C3) 5753–5766.

    Article  Google Scholar 

  • Martinson D G and Iannuzzi R A 2003 Spatial/temporal patterns in Weddell gyre characteristics and their relationship to global climate; J. Geophys. Res. 108(C4) 8083, doi: 10.1029/2000JC000538.

    Article  Google Scholar 

  • Mazloff M, Heimbach P and Wunsch C 2010 An Eddy-permitting Southern Ocean state estimate; J. Phys. Oceanogr. 40 880–899.

    Article  Google Scholar 

  • Orsi A H, Whitworth T and Nowlin W D 1995 On the meridional extent and fronts of the Antarctic Circumpolar Current; Deep. Sea Res. 42 641–673.

    Article  Google Scholar 

  • Parkinson C L and Cavalieri D J 2012 Antarctic sea ice variability and trends, 1979–2010; The Cryosphere 6 871–880.

    Article  Google Scholar 

  • Patra P K, Maksyutov S, Ishizawa M, Nakazawa T, Takahashi T and Ukita J 2005 Interannual and decadal changes in the sea–air \(\text{CO}_{2}\) flux from atmospheric inverse modelling; Global Biogeochem. Cycles 19(4) GB4013, doi: 10.1029/2004GB002257.

  • Polvani L M and Smith K L 2013 Can natural variability explain observed Antarctic sea ice trends? New modelling evidence from CMIP5; Geophys. Res. Lett. 40 3195–3199.

    Article  Google Scholar 

  • Powell D C, Markus T and Stoessel A 2005 Effects of snow depth forcing on Southern Ocean sea ice simulations; J. Geophys. Res. 110 C06001, doi: 10.1029/2003JC002212.

    Article  Google Scholar 

  • Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C and Kaplan A 2003 Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century; J. Geophys. Res. 108, doi: 10.1029/2002JD002670.

  • Reynolds R W, Smith T M, Liu C, Chelton D B, Casey K S and Schlax M G 2007 Daily high-resolution-blended analyses for sea surface temperature; J. Climate 20 5473–5496.

    Article  Google Scholar 

  • Rintoul S, Hughes C and Olbers D 2001 The Antarctic circumpolar current system; In: Ocean Circulation and Climate (eds) Siedler G, Church J and Gould J, Academic Press, New York, pp. 271–302.

    Google Scholar 

  • Rooth C 1982 Hydrology and Ocean Circulation; Progr. Oceanogr. 11 131–149.

    Article  Google Scholar 

  • Sigmond M and Fyfe J C 2010 Has the ozone hole contributed to increased Antarctic sea ice extent?; Geophys. Res. Lett. 37 L18502, doi: 10.1029/2010GL044301.

    Google Scholar 

  • Smith W and Sandwell D 1997 Global sea floor topography from satellite altimetry and ship depth soundings; Science 277(5334) 1956–1962.

    Article  Google Scholar 

  • Stossel A, Zhang Z and Vihma T 2011 The effect of alternative real-time wind forcing on Southern Ocean sea ice simulations; J. Geophys. Res. 116 C11021, doi: 10.1029/2011JC007328.

    Article  Google Scholar 

  • Swart N C and Fyfe J C 2013 The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends; Geophys. Res. Lett. 40 4328–4332.

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Sabine C and Watson A 2009 Climatological mean and decadal change in surface ocean \(\text{ pCO }_{2,}\) and net sea–air CO\(_2\) flux over the global oceans; Deep-Sea Res. Part II; Topical Studies in Oceanography 56 554–577.

    Google Scholar 

  • Thomas D N and Dieckmann G S 2002 Antarctic sea ice – a habitat for extremophiles; Science 295(5555) 641–644.

    Article  Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C and Duliere V 2005 On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model; Ocean Model. 8 175–201.

    Article  Google Scholar 

  • Timmermann R, Danilov S, Schroter J, Böning C, Sidorenko D and Rollenhagen K 2009 Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model; Ocean Model. 27 114–129.

    Article  Google Scholar 

  • Timmermann R and Beckmann A 2004 Parameterization of vertical mixing in the Weddell Sea; Ocean Model. 6 83–100.

    Article  Google Scholar 

  • Timmermann R, Beckmann A and Hellmer H H 2002 Simulations of ice-ocean dynamics in the Weddell Sea 1. Model configuration and validation; J. Geophys. Res. 107(C3) 3024, doi: 10.1029/2000JC000741.

    Article  Google Scholar 

  • Trenberth K E, Large W G and Olson J G 1990 The mean annual cycle in global ocean wind stress; J. Phys. Oceanogr. 20 1742–1760.

    Article  Google Scholar 

  • Turner J, Bracegirdle T J, Phillips T, Marshall G J and Hosking J S 2013 An initial assessment of Antarctic sea ice extent in the CMIP5 models; J. Climate 26 1473–1484.

    Article  Google Scholar 

  • Walsh J E 1983 The role of sea ice in climatic variability: Theories and evidence 1; Atmos. Ocean 21 229–242.

    Google Scholar 

  • Warren B A 1983 Why is no deep water formed in the North Pacific?; J. Mar. Res. 41 327–347.

    Article  Google Scholar 

  • Wunsch C 1998 The work done by the wind on the oceanic general circulation; J. Phys. Oceanogr. 28 2332–2340.

    Article  Google Scholar 

  • Yuan XI 2004 ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms; Antarctic Science 16 415–425.

    Article  Google Scholar 

  • Yuan X and Martinson D G 2000 Antarctic sea ice extent variability and its global connectivity; J. Climate 13 1697–1717.

    Article  Google Scholar 

  • Zhang J 2007 Increasing Antarctic sea ice under warming atmospheric and oceanic conditions; J. Climate 20 2515–2529.

    Article  Google Scholar 

  • Zhang J and Hibler W D III 1997 On an efficient numerical method for modelling sea ice dynamics; J. Geophys. Res. 102 8691–8702.

    Article  Google Scholar 

  • Zhang J and Rothrock D A 2003 Modelling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates; Mon. Wea. Rev. 131 845–861.

Download references

Acknowledgements

The authors thank the anonymous reviewer and editor for the constructive comments that led to improvement of the manuscript. AK is thankful to ISRO for providing Junior Research Fellowship. SD is thankful to the NCAOR/ISRO/DST for financial assistance in the form of research project. Thanks are also due to the NCEP/NCAR, ORAS4, HadISST, AVHRR, SOSE, GECCO2, SSM/I, and GIOMAS communities for making their data freely available for research purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneet Dwivedi.

Additional information

Corresponding editor: D Shankar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Dwivedi, S. & Rajak, D.R. Ocean sea-ice modelling in the Southern Ocean around Indian Antarctic stations. J Earth Syst Sci 126, 70 (2017). https://doi.org/10.1007/s12040-017-0848-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-017-0848-5

Keywords

Navigation