Skip to main content
Log in

A new water-stable cadmium(II) coordination polymer for luminescence sensing of chlortetracycline and Fe3+ ions in aqueous solution

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A new ternary coordination polymer (CP), {[Cd(L)(nip)(H2O)]·H2O}n (1) (L = 1,6-bis(benzimidazol-2-yl)hexane, H2nip = 5-nitroisophthalic acid), was hydrothermally synthesized and characterized. 1 is a two-dimensional sheet and extends into three-dimensional supramolecular networks through O-H···O hydrogen bonding interactions, which displays high thermal and pH stabilities. 1 demonstrated notable selectivity, sensitivity, and reusability for the luminescent sensing of chlortetracycline (CTC) and Fe3+ ions. Density functional theory calculations and UV−Vis absorption spectroscopy were employed to investigate the possible sensing mechanisms.

Graphical Abstract

A new Cd(II) metal coordination polymer, namely {[Cd(L)(nip)(H2O)]·H2O}n can act as a sensitive luminescent probe for chlortetracycline (CTC) and Fe3+ ions in water with excellent selectivity and recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. de Ilurdoz M S, Sadhwani J J and Reboso J V 2022 Antibiotic removal processes from water & wastewater for the protection of the aquatic environment-a review J. Water Process. Eng. 45 102474

    Article  Google Scholar 

  2. Li Z H, Yuan L, Yang C W, Wang R and Sheng G P 2022 Anaerobic electrochemical membrane bioreactor effectively mitigates antibiotic resistance genes proliferation under high antibiotic selection pressure Environ. Int. 166 107381

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Ying G G and Deng W J 2019 Antibiotic residues in food: extraction, analysis, and human health concerns J. Agric. Food Chem. 67 7569

    Article  CAS  PubMed  Google Scholar 

  4. Sharma P, Dutta D, Udayan A, Nadda A K, Lam S S and Kumar S 2022 Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being Environ. Pollut. 305 119248

    Article  CAS  PubMed  Google Scholar 

  5. Dutt S, Hamza I and Bartnikas T B 2022 Molecular mechanisms of iron and heme metabolism Annu. Rev. Nutr. 42 311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Theil E C and Goss D J 2009 Living with iron (and oxygen): questions and answers about iron homeostasis Chem. Rev. 109 4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y Y, Stockmann R, Ng K and Ajlouni S 2021 Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability: A review Compr. Rev. Food Sci. Food Saf. 20 652

    Article  CAS  PubMed  Google Scholar 

  8. Abdelhamid H N, Bermejo-Gómez A, Martín-Matute B and Zou X 2017 A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan Mikrochim. Acta 184 3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdelhamid H N and Sharmoukh W 2021 Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions Microchem. J. 163 105873

  10. Ahmadi A, Khoshfetrat S M, Kabiri S, Dorraji P S, Larijani B and Omidfar K 2021 Electrochemiluminescence paper-based screen-printed electrode for HbA1c detection using two-dimensional zirconium metal-organic framework/Fe3O4 nanosheet composites decorated with Au nanoclusters Mikrochim. Acta 188 296

    Article  CAS  PubMed  Google Scholar 

  11. Sun Z, Ling Y, Liu S G, Yang Y Z, Wang X H, Fan Y Z, et al. 2019 Metal–organic framework as a chemosensor based on luminescence properties for monitoring cetyltrimethylammonium bromide and its application in smartphones Inorg. Chem. 58 8388

    Article  CAS  PubMed  Google Scholar 

  12. Ahmadijokani F, Molavi H, Tajahmadi S, Rezakazemi M, Amini M, Kamkar M, et al. 2022 Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond Coord. Chem. Rev. 464 214562

    Article  CAS  Google Scholar 

  13. Lahcen A A, Surya SG, Beduk T, Vijjapu M T, Lamaoui A, Durmus C, et al. 2022 Metal–organic frameworks meet molecularly imprinted polymers: Insights and prospects for sensor applications ACS Appl. Mater. Interfaces 14 49399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ezugwu CI, Liu S, Li C, Zhuiykov S, Roy S and Verpoort F 2022 Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels Coord. Chem. Rev. 450 214245

    Article  CAS  Google Scholar 

  15. Subramaniyam V, Ravi P V and Pichumani M 2022 Structure co-ordination of solitary amino acids as ligands in metal-organic frameworks (MOFs): A comprehensive review J. Mol. Struct. 1251 131931

    Article  CAS  Google Scholar 

  16. Jia C, He T and Wang G M 2023 Zirconium-based metal-organic frameworks for fluorescent sensing Coord. Chem. Rev. 476 214930

    Article  CAS  Google Scholar 

  17. Hulushe S T, Malan F P, Hosten E C, Akerman M P, Lemmerer A, Khanye S D and Watkins G M 2023 Cation-/ligand-induced solvent-assisted transformations of Zn(II) and Cu(II) complexes featuring single-pocket multidentate chelating members Cryst. Growth Des. 23 4836

    Article  CAS  Google Scholar 

  18. Zhu H, Li Y H, Xiao Q Q and Cui G H 2020 Three luminescent Cd(II) coordination polymers containing aromatic dicarboxylate and flexible bis (benzimidazole) ligands as highly sensitive and selective sensors for detection of Cr2O72– oxoanions in water Polyhedron 187 114648

  19. Zhuang Z and Liu D 2020 Conductive MOFs with photophysical properties: applications and thin-film fabrication Nanomicro. Lett. 12 1

    Google Scholar 

  20. Shi J, Ran Z, Peng F, Chen M, Li L, Ji L and Huang W 2022 High-performance three-coordinated organoboron emitters for organic light-emitting diodes J. Mater. Chem. C 10 9165

    Article  CAS  Google Scholar 

  21. Zheng J J and Sakaki S 2022 Molecule in soft-crystal at ground and excited states: Theoretical approach J. Photochem. Photobiol. C 51 100482

    Article  CAS  Google Scholar 

  22. Qi H, Teng M, Liu M, Liu S, Li J, Yu H, et al. 2019 Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines J. Colloid Interface Sci. 539 332

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Casanova D, Llunell M, Alemany P and Alvarez S 2005 The rich stereochemistry of eight-vertex polyhedra: a continuous shape measures study Chem. Eur. J. 11 1479

    Article  CAS  PubMed  Google Scholar 

  24. Blatov V A, Shevchenko A P and Proserpio D M 2014 Applied topological analysis of crystal structures with the program package ToposPro Cryst. Growth Des. 14 3576

    Article  CAS  Google Scholar 

  25. Shevchenko A P, Shabalin A A, Karpukhin I Y and Blatov V A 2022 Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system Sci. Technol. Adv. Mater. Methods 2 250

    Google Scholar 

  26. Parmar B, Bisht K K, Rachuri Y and Suresh E 2020 Zn(II)/Cd(II) based mixed ligand coordination polymers as fluorosensors for aqueous phase detection of hazardous pollutants Inorg. Chem. Front. 7 1082

    Article  CAS  Google Scholar 

  27. He J X, Yuan H Q, Zhong Y F, Peng X X, Xia Y F, Liu S Y, Fan Q, Yang J L, Deng K, Wang X Y and Bao G M 2022 A luminescent Eu3+-functionalized MOF for sensitive and rapid detection of tetracycline antibiotics in swine wastewater and pig kidney Spectrochim. Acta A 277 121252

    Article  CAS  Google Scholar 

  28. Wang H H, Zhang Y, Yang D B, Hou L, Li Z Y and Wang Y Y 2021 Fluorine-substituted regulation in two comparable isostructural Cd(II) coordination polymers: enhanced fluorescence detection for tetracyclines in water Cryst. Growth Des. 21 2488

    Article  CAS  Google Scholar 

  29. Yan Y T, Liu J, Yang G P, Zhang F, Fan Y K, Zhang W Y and Wang Y Y 2018 Highly selective luminescence sensing for the detection of nitrobenzene and Fe3+ by new Cd(II)-based MOFs CrystEngComm 20 477

  30. Zhao F H, Guo W Y, Li S Y, Li Z L, Yan X Q, Jia X M, et al. 2019 Two entangled photoluminescent mofs of naphthalenedisulfonate and bis(benzimidazole) ligands for selective sensing of Fe3+ J. Solid State Chem. 278 120926

    Article  CAS  Google Scholar 

  31. Li L, Han Y F, Zheng Z B, Wang C A, Nie K, Li J K and Ma C L 2021 A luminescent Zn-MOF constructed from l-aspartic acid and 4, 4-bipyridine: Selectively and sensitively detect Fe3+ and 2, 4, 6-trinitrophenol (TNP) in aqueous solution J. Solid State Chem. 295 121887

    Article  CAS  Google Scholar 

  32. Zhang Y, Yang X and Zhou H C 2018 Direct synthesis of functionalized PCN-333 via linker design for Fe3+ detection in aqueous media Dalton Trans. 47 11806

  33. Zhang X P, Fu L, Blatova O A and Cui G H 2023 Four metal-organic frameworks for the sensing of oxytetracycline/nitrofurazone and Fe3+ ions J. Solid State Chem. 324 124124

    Article  CAS  Google Scholar 

  34. Long C, Liu S, Li X, Zhu J, Zhang L, Qing T, et al. 2022 In-situ covalent bonding of carbon dots on two-dimensional tungsten disulfide interfaces for effective monitoring and remediation of chlortetracycline residue Chem. Eng. J. 432 134315

    Article  CAS  Google Scholar 

  35. Shi Y S, Yu Q, Zhang J W and Cui G H 2021 Four dual-functional luminescent Zn(II)-MOFs based on 1, 2, 4, 5-benzenetetracarboxylic acid with pyridylbenzimidazole ligands for detection of iron(III) ions and acetylacetone CrystEngComm 23 1604

Download references

Acknowledgements

The work was supported by the Hebei Natural Science Foundation (B2021209020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Chen Deng or Gui-Ying Dong.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1411 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XP., Deng, XC. & Dong, GY. A new water-stable cadmium(II) coordination polymer for luminescence sensing of chlortetracycline and Fe3+ ions in aqueous solution. J Chem Sci 136, 21 (2024). https://doi.org/10.1007/s12039-024-02252-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02252-y

Keywords

Navigation