Skip to main content
Log in

Fluorene-based conjugates with geminal donor-acceptor: synthesis, photophysical properties and theoretical studies

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We report six new 2,6-disubstituted fluorene-based conjugated molecules carrying orthogonal triphenylamine and pyridine moiety as donor-acceptor units at the C-9 position. The geminal donor-acceptor is connected to the fluorene core by σ-conjugation. Optical/solvatochromic studies, investigated by UV-VIS absorption and fluorescence spectroscopy, show blue emission with good quantum yield (40–70%) in solution and in thin film state for the synthesized compounds. In microsecond order, the derivatives give a shorter delayed lifetime (both in solution and thin films), facilitating reverse intersystem crossing (RISC). TD-DFT studies for all the derivatives show minimal singlet-triplet splitting in the gas phase (close to 0.2 eV), and the high thermal stability confirmed by the compound's TGA method (320–398 °C) makes them very useful in the optoelectronic market.

Graphical abstract

D-σ-π-σ-A based blue emitters carrying orthogonal triphenylamine and pyridine moiety as donor-acceptor unit at C-9 position were synthesized. Optical/solvatochromic studies, investigated by UV-VIS absorption and fluorescence spectroscopy, show blue emission with good quantum yield (40–70%) in solution and in thin film state for the synthesized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. (a) Tang C W and Slyke S A Van 1987 Organic electroluminescent diodes Appl. Phys. Lett. 51 913; (b) Jenekhe S A 1995 Excited-state complexes of conjugated polymers Adv. Mater. 7 309; (c) Miyata S and Nalwa H S (Eds.) 1997 Organic Electroluminescent Materials and Derivatives (Gordon and Breach: New York); (d) Kraft A, Grimsdale A C and Holms A B 1998 Electroluminescent Conjugated Polymers–Seeing Polymersina New Light Angew. Chem., Int. Ed. 37 402; (e) Shirota Y 2000 Organic materials for electronic and optoelectronic devices J. Mater. Chem. 10 1; (f) Segura J L 1998 The chemistry of electroluminescent organic materials Acta Polym. 49 319

  2. Seo J H, Lee S C, Kim Y K and Kim Y S 2009 Efficient red electrophosphorescent organic lightemitting diodes based on the new sensitized heteroleptic tris-cyclometalated Ir(III) complexes Thin Solid Films 517 4119

  3. Danel KS, Gąsiorski P, Matusiewicz M, Całus S, Uchacz T and Kityk A V 2010 UV–vis spectroscopy and semiempirical quantum chemical studies on methyl derivatives of annulated analogues of azafluoranthene and azulene dyes Spectrochim. Acta Part A 77 16

    Article  ADS  CAS  Google Scholar 

  4. Całus S, Danel K S, Uchacz T and Kityk A V 2010 Optical absorption and fluorescence spectra of novel annulated analogues of azafluoranthene and azulene dyes Mater. Chem. Phys. 121 477

    Article  Google Scholar 

  5. Wang B, Lv X, Tan J, Zhang Q, Huang Z, Yi W et al., 2016 Bipolar phenanthroimidazole–diazacarbazole hybrids with appropriate band gaps for highly efficient and low roll-off red, green and blue electroluminescent devices J. Mater. Chem. C 4 8473

    Article  CAS  Google Scholar 

  6. Monkman A 2022 Why Do We Still Need a Stable Long Lifetime Deep Blue OLED Emitter? ACS Appl. Mater. Interfaces 14 20463

    Article  CAS  PubMed  Google Scholar 

  7. Uoyama H, Goushi K, Shizu K, Nomura H and Adachi C 2012 Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence Nature 492 234

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wong M Y and Colman E Z 2017 Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes Adv. Mater. 29 1605444

    Article  Google Scholar 

  9. Liu Y, Li C, Ren Z, Yan S and Bryce M R 2018 All-Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes Nat. Rev. Mater. 3 18020

    Article  ADS  CAS  Google Scholar 

  10. Bryden M A and Colman E Z 2021 Organic Thermally Activated Delayed Fluorescence (TADF) Compounds Used in Photocatalysis Chem. Soc. Rev. 50 7587

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen V N, Kumar A, Lee M H and Yoon J 2020 Recent Advances in Biomedical Applications of Organic Fluorescence Materials with Reduced Singlet-Triplet Energy Gaps Coord. Chem. Rev. 425 213545

    Article  CAS  Google Scholar 

  12. Goushi K, Yoshida K, Sato K and Adachi C 2012 Organic Light-Emitting Diodes Employing Efficient Reverse Intersystem Crossing for Triplet-to-Singlet State Conversion Nat. Photon. 6 253

    Article  ADS  CAS  Google Scholar 

  13. Park I S, Komiyama H and Yasuda T 2017 Pyrimidine-based twisted donor–acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence Chem. Sci. 8 953

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Liu J, Yuan W, Wang Y, Zhou H, Liu X, Cao J and Zhang C 2019 Unique twisted donor–acceptor cruciform π-architectures exhibiting aggregation-induced emission and stimuli-response behaviours Dyes Pigm. 167 135

  15. Karaman M, Gupta A K, Suresh S M, Matulaitis T, Mardegan L, Tordera D, et al. 2022 Ionic multiresonant thermally activated delayed fluorescence emitters for light emitting electrochemical cells Beilstein J. Org. Chem. 18 1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ahn D H, Lee H, Kim S W, Karthik D, Lee J, Jeong H, et al. 2019 Highly Twisted Donor–Acceptor Boron Emitter and High Triplet Host Material for Highly Efficient Blue Thermally Activated Delayed Fluorescent Device ACS Appl. Mater. Interfaces 11 14909

    Article  CAS  PubMed  Google Scholar 

  17. Keruckiene R, Guzauskas M, Volyniuk D, Matulis V E, Lyakhovc D A and Grazulevicius J V 2022 Theoretical and experimental insights into the properties of donor–r–acceptor type derivatives of quinoxaline and methanone containing different donor moieties New J. Chem. 46 20768

    Article  CAS  Google Scholar 

  18. Wu Y, Zhu Y, Zhan Z, Zhao C, He J, Yan C and Meng H 2022 Narrowband Deep-Blue Multi-Resonance Induced Thermally Activated Delayed Fluorescence: Insights from the Theoretical Molecular Design Molecules 27 348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park J, Lim J, Lee J H, Jang B, Han J H, Yoon S S and Lee J Y 2021 Asymmetric Blue Multi resonance TADF Emitters with a Narrow Emission Band ACS Appl. Mater. Interfaces 13 45798

    Article  CAS  PubMed  Google Scholar 

  20. Gao H, Shen S, Qin Y, Liu G, Gao T, Dong X, et al. 2022 Ultrapure Blue Thermally Activated Delayed Fluorescence (TADF) Emitters Based on Rigid Sulfur/Oxygen-Bridged Triaryl boron Acceptor: MR TADF and D−A TADF J. Phys. Chem. Lett. 13 7561

    Article  CAS  PubMed  Google Scholar 

  21. Chan C Y, Suresh S M, Lee Y T, Tsuchiya Y, Matulaitis T, Hall D, et al. 2022 Two boron atoms versus one: high-performance deep-blue multi-resonance thermally activated delayed fluorescence emitters Chem. Commun. 58 9377

    Article  CAS  Google Scholar 

  22. Im Y, Kim M, Cho Y J, Seo J A, Yook K S and Lee J Y 2017 Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters Chem. Mater. 29 1946

    Article  CAS  Google Scholar 

  23. Xia G, Qu C, Zhu Y, Ye J, Ye K, Zhang Z and Wang Y A 2021 TADF Emitter Featuring Linearly Arranged Spiro-Donor and Spiro Acceptor Groups: Efficient Nondoped and Doped Deep-Blue OLEDs with CIEy< 0.1 Angew. Chem. Int. Ed. 60 9598

  24. Woo S J, Kim Y H and Kim J J 2021 Dihedral Angle Distribution of Thermally Activated Delayed Fluorescence Molecules in Solids Induces Dual Phosphorescence from Charge-Transfer and Local Triplet States Chem. Mater 33 5618

    Article  CAS  Google Scholar 

  25. Song Y, Tian M, Yu R and He L 2021 Through-Space Charge-Transfer Emitters Developed by Fixing the Acceptor for High-Efficiency Thermally Activated Delayed Fluorescence ACS Appl. Mater. Interfaces 13 60269

    Article  CAS  PubMed  Google Scholar 

  26. Jayabharathi J, Ramya R, Thanikachalam V, Jeevaa P and Sarojpurani 2019 Efficient full-colour organic light-emitting diodes based on donor–acceptor electroluminescent materials with a reduced singlet–triplet splitting energy gap RSC Adv. 9 2948

  27. Zhang X, Ji X, Jiang S, Liu L, Weeks B L and Zhang Z 2011 Highly efficient synthesis of 9-fluorenones from 9H-fluorenes by air oxidation Green Chem. 13 1891

  28. Feng X, Hu JY, Tomiyasu H, Seto N, Redshaw C, Elsegoodd M R J and Yamato T 2013 Synthesis and photophysical properties of novel butterfly-shaped blue emitters based on pyrene Org. Biomol. Chem. 11 8366

    Article  CAS  PubMed  Google Scholar 

  29. Anandhan K, Ceron M, Perumal V, Ceballos P, Guerra P G, Gutierrez E P, Castillo A E, Thamotharanb S and Percino M J 2019 Solvatochromism and pH effect on the emission of triphenylimidazole-phenylacrylonitrile derivative: experimental and DFT studies RSC Adv. 9 12085

  30. Zhang Y, Li D, Lia Y and Yu J 2014 Solvatochromic AIE luminoges as supersensitive waterdetectors in organic solvents and highly efficient cyanide chemosensors in water Chem. Sci. 5 2710

    Article  CAS  Google Scholar 

  31. Nagy M, Fiser B, Ori M, Vanyorek L and Viskolcz B 2022 Optical study of solvatochromicisocyanoaminoanthracene Dyes and 1,5-diaminoanthracene Int. J. Mol. Sci. 23 1315

  32. Li X, Baryshnikov G, Deng C, Bao X, Wu B, Zhou Y, et al. 2019 A three-dimensional ratiometric sensing strategy on unimolecular fluorescence–thermally activated delayed fluorescence dual emission Nat. Commun. 10 731

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Serevicius T, Skaisgiris R, Dodonova J, Jagintavicius L, Banevicius D, Kazlauskas K, et al. 2020 Achieving Submicrosecond Thermally Activated Delayed Fluorescence Lifetime and Highly Efficient Electroluminescence by Fine-Tuning of the Phenoxazine−Pyrimidine Structure ACS Appl. Mater. Interfaces 12 10727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo Y, Zhao B, Zhang B, Lan Y, Chen L, Zhang Y, Bao Y and Niu Li 2022 The Scaffold of Thermally Activated Delayed Fluorescence Polymer Dots Towards Aqueous Electrochemiluminescence and Biosensing Application Analyst 147 2442

  35. Pander P and Dias F B 2016 Photophysical Characterisation of Thermally Activated Delayed Fluorescence (TADF) Materials Display Imaging 00 1

  36. Rajamalli P, Chen D, Suresh S M, Tsuchiya Y, Adachi C and Colman E Z 2021 Planar and Rigid Pyrazine-Based TADF Emitter for Deep Blue Bright Organic Light-Emitting Diodes Eur. J. Org. Chem. 2285

  37. Yang J G, Song X F, Kaili J W, Chang X, Tan L Y, Liu C X, et al. 2021 Highly Efficient Thermally Activated Delayed Fluorescence from Pyrazine-Fused Carbene Au(I) Emitters Chem. Eur. J. 27 17834

    Article  CAS  PubMed  Google Scholar 

  38. Dawei Y, Xiaojuan Z, Zhiming W, Bing Y, Yuguang M and Yuyu P 2018 Theoretical investigation of the effects of various substituents on the large energy gap between triplet excited-states of anthracene RSC Adv. 8 27979

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to the Sophisticated Analytical Instrumental Facilities (SAIF), IIEST Shibpur, and India, for NMR & HRMS measurement & R.M. is thankful to the Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India, for an Institute Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binay K Ghorai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1925 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, R., Jana, D. & Ghorai, B.K. Fluorene-based conjugates with geminal donor-acceptor: synthesis, photophysical properties and theoretical studies. J Chem Sci 136, 20 (2024). https://doi.org/10.1007/s12039-024-02249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02249-7

Keywords

Navigation