Skip to main content
Log in

Photodissociation dynamics of HN3 at 248 nm: a trajectory surface hopping study

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The photodissociation dynamics of hydrazoic acid (HN3) at 248 nm has been studied using a quasi-classical variant of the trajectory surface-hopping (TSH) method in conjunction with Tully’s fewest switches algorithm. Trajectories were integrated on-the-fly at the MRCIS(8,9)/6-31++G(d,p) level of theory. Analysis of our trajectory simulation reveals that N2 (\(\widetilde{\mathrm{X}}\) 1Σg+) + NH (a 1Δ) as the primary major products contributing ~95% of the overall product formation with N3 \(\left(\widetilde{X }{ }^{2}{\Pi }_{\mathrm{g}}\right)\) + H(2S) as the minor products contributing the rest ~5%. No internal conversion (IC) from the first excited state S1 to the ground state S0 was observed in the photodissociation of HN3 from its first excited singlet state (S1). Intersystem crossing (ISC) from the first excited singlet state S1 to the lowest triplet state T1 was predicted to be inefficient based on the calculated weak spin-orbit interactions between the states.

Graphical abstract

Synopsis We have studied the photodissociation dynamics of hydrazoic acid (HN3) using the trajectory surface-hopping (TSH) method. Our trajectory simulation reveals that N2 (\(\widetilde{\mathrm{X}}\) 1Σg+) + NH (a 1Δ) as the primary major products contributing ~95% of the overall product formation with N3 \(\left(\widetilde{X }{ }^{2}{\Pi }_{\mathrm{g}}\right)\) + H(2S) as the minor products contributing the rest ~5%. No internal conversion (IC) was observed, and intersystem crossing (ISC) was predicted to be inefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Yuan K, Cheng Y, Wang F and Yang X 2008 Photodissociation Dynamics of HN3 and DN3 at 157 nm J. Phys. Chem. A 112 5332

    Article  CAS  PubMed  Google Scholar 

  2. Friedmann A, Soliva A M, Nizkorodov S A, Bieske E J and Maier J P 1994 A 3u<-- X 3g- Electronic Spectrum of N3+ J. Phys. Chem. 98 8896

  3. Orlando J J, Tyndall G S, Betterton E A, Lowry J and Stegall S T 2005 Atmospheric Chemistry of Hydrazoic Acid (HN3): UV Absorption Spectrum, HO. Reaction Rate, and Reactions of the .N3 Radical Environ. Sci. Technol. 39 1632

  4. Foy B R, Casassa M P, Stephenson J C and King D S 1988 Unimolecular Dynamics Following Vibrational Overtone Excitation of HN3 v1 = 5 and v1 = 6: HN3(X;v, J, K)→HN(X 3Σ;v, J, Ω)+N2(X 1Σg+) J. Chem. Phys. 89 608

    Article  CAS  ADS  Google Scholar 

  5. Foy B R, Casassa M P, Stephenson J C and King D S 1989 Dissociation Lifetimes and Level Mixing in Overtone-Excited HN3(X1A′) J. Chem. Phys. 90 7037

    Article  CAS  ADS  Google Scholar 

  6. Foy B R, Casassa M P, Stephenson J C and King D S 1990 Overtone-Excited HN3(X1A′): Anharmonic Resonance, Homogeneous Linewidths, and Dissociation Rates J. Chem. Phys. 92 2782

    Article  CAS  ADS  Google Scholar 

  7. Rohrer F and Stuhl F 1988 The 193 (and 248) nm photolysis of HN3: Formation and internal energy distributions of the NH (a 1Δ, b 1+, A 3Π, and c 1Π) states J. Chem. Phys. 88 4788

    Article  CAS  ADS  Google Scholar 

  8. Gericke K-H, Theinl R and Comes F 1990 Vector correlations in the photofragmentation of HN3 J. Chem. Phys. 92 6548

    Article  CAS  ADS  Google Scholar 

  9. Baronavski A P, Miller R G and McDonald J R 1978 Laser induced photodissociation of HN3 at 266 nm. I. Primary products, photofragment energy distributions and reactions of intermediates Chem. Phys. 30 119

  10. Gericke K-H, Theinl R and Comes F J 1990 Photofragment energy distribution and rotational anisotropy from excitation of HN3 at 266 nm Chem. Phys. Lett. 164 605

    Article  ADS  Google Scholar 

  11. Gericke K-H, Theinl R and Comes F 1989 Photofragment energy distribution and rotational anisotropy from excitation of HN3 at 266 nm J. Chem. Phys. Lett. 164 605

    Article  CAS  ADS  Google Scholar 

  12. Chu J J, Marcus P and Dagdigian P J 1990 One-color photolysis–ionization study of HN3: The N2 fragment internal energy distribution and μ-v-J correlations J. Chem. Phys. 93 257

    Article  CAS  ADS  Google Scholar 

  13. Gericke K-H, Haas T, Lock M, Theinl R and Comes F J 1991 Hydrazoic acid (Ã 1A'') hypersurface at excitation energies of 4.0-5.0 eV J. Phys. Chem. 95 6104

  14. Lock M, Gericke K-H and Comes F 1996 Photodissociation dynamics of HN3(DN3) + hv → H(D)+ N3 J. Chem. Phys. 213 385

    CAS  Google Scholar 

  15. Cook P A, Langford S R and Ashfold M N R 1999 The Ultraviolet Photodissociation of HN3: The H + N3 Product Channel Phys. Chem. Chem. Phys. 1 45

    Article  CAS  Google Scholar 

  16. Haas T, Gericke K-H, Maul C and Comes F J 1993 Photodissociation Dynamics of HN3. The N3 Fragment Internal Energy Distribution Chem. Phys. Lett. 202 108

  17. Hawley M, Baronavski F and Nelson H H 1993 Vibrational distributions of NH (a 1Δ) from the photolysis of HN3 from 220–290 nm J. Chem. Phys. 99 2638

    Article  CAS  ADS  Google Scholar 

  18. Gericke K-H, Lock M and Comes F J 1991 Photodissociation of HN3: Direct Formation of Hydrogen Atoms Chem. Phys. Lett. 186 427

    Article  CAS  ADS  Google Scholar 

  19. Schoennenbeck G, Biehl H, Stuhl F, Meier U and Staemmler V 1998 Vuv photolysis of hydrazoic acid: Absorption and fluorescence excitation spectra J. Chem. Phys. 109 2210

    Article  ADS  Google Scholar 

  20. Zhang J S, Xu K S and Amaral G 1999 Ultraviolet photodissociation dynamics of HN3: the H+N3 channel Chem. Phys. Lett. 299 285

    Article  CAS  ADS  Google Scholar 

  21. Cook P A, Jimeno P, Ashfold M N R, Balint-Kurti G G and Dixon R N 2002 An ab initio study of the photodissociation of HN3 molecules following excitation in the à 1A″ ← X 1A′ absorption system Phys. Chem. Chem. Phys. 4 1513

    Article  CAS  Google Scholar 

  22. Zhang J, Zhang P, Cheng Y, Yuan K, Harich S A, Wang X, et al. 2006 An experimental and theoretical study of ring closing dynamics in HN3 Phys. Chem. Chem. Phys. 8 1690

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Yuan K, Cheng Y, Harich S A, Wang X, Yang X and Wodtke A M 2007 UV Photodissociation Dynamics of HN3 in 190–248 nm J. Chem. Phys. 20 345

    CAS  Google Scholar 

  24. Alexander M H, Werner H-J and Dagdigian P J 1988 Energetics and spin-and Λ-doublet selectivity in the infrared multiphoton dissociation HN3 (X 1A’)→ N2 (X 1Σ+ g)+ NH (X 3Σ, a 1Δ): Theory J. Chem. Phys. 89 1388

    Article  CAS  ADS  Google Scholar 

  25. Alexander M H, Werner H-J, Hemmer T and Knowles P J 1990 Ab initio Study of the Energetics of the Spin-Allowed and Spin-Forbidden Decomposition of HN3 J. Chem. Phys. 93 3307

    Article  CAS  ADS  Google Scholar 

  26. Yarkony D R 1990 Spin−Orbit Effects in the Decomposition Reaction N3H(X 1A′) → N2(X 1Σg +)+NH(X 3σ, a 1Δ) J. Chem. Phys. 92 320

    Article  CAS  ADS  Google Scholar 

  27. Meier U and Staemmler V 1991 CASSCF and CEPA calculations for the photodissociation of HN3. 2. Photodissociation into N2 and NH on the lowest 1A'' surface of HN3 J. Phys. Chem. 95 6111

  28. Fang W-H 2000 Photodissociation of HN3 at 248 nm and Longer Wavelength: A CASSCF Study J. Phys. Chem. A 104 4045

    Article  CAS  Google Scholar 

  29. McDouall J J W, Peasley K and Robb M A 1988 A simple MCSCF perturbation theory: Orthogonal valence bond Møller-Plesset 2 (OVB MP2) Chem. Phys. Lett. 148 183

    Article  CAS  ADS  Google Scholar 

  30. Galvão B R L and Varandas A J C 2013 Accurate Study of the Two Lowest Singlet States of HN3: Stationary Structures and Energetics at the MRCI Complete Basis Set Limit J. Phys. Chem. A 117 4044

    Article  PubMed  Google Scholar 

  31. Frisch M J, Trucks G W, Schlegel H B and others Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT: 2010.

  32. Ghosh S, Rauta A K and Maiti B 2016 Photodissociation dynamics of propyne at 193 nm: a trajectory surface hopping study Phys. Chem. Chem. Phys. 18 8219

    Article  CAS  PubMed  Google Scholar 

  33. Lischka H, Shepard R, Shavitt I, Pitzer R M, Dallos M and others COLUMBUS, an ab initio electronic structure program, Release 5.9.1; 2006

  34. Tully J C 1990 Molecular dynamics with electronic transitions J. Chem. Phys. 93 1061

    Article  CAS  ADS  Google Scholar 

  35. Hammes-Schiffer S and Tully J C 1994 Proton transfer in solution: Molecular dynamics with quantum transitions J. Chem. Phys. 101 4657

    Article  CAS  ADS  Google Scholar 

  36. Barbatti G, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksic M and Lischka H 2007 The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems J. Photochem. Photobiol. 190 228

    Article  CAS  Google Scholar 

  37. Barbatti M, Aquinoab A J A and Lischka H 2010 The UV absorption of nucleobases: semi-classical ab initio spectra simulations Phys. Chem. Chem. Phys. 12 4959

    Article  CAS  PubMed  Google Scholar 

  38. Kajimoto O, Yamamoto T and Fueno T 1979 Kinetic Studies of the Thermal Decomposition of Hydrazoic Acid in Shock Waves J. Chem. Phys. 83 429

    Article  CAS  Google Scholar 

  39. Stephenson J C, Casassa M P and King D S 1988 Energetics and Spin- and Λ-Doublet Selectivity in the Infrared Multiphoton Dissociation DN3→ DN(X 3Σ, a 1Δ) + N2(X 1Σg+): Experiment J. Chem. Phys. Lett. 89 1378

    CAS  ADS  Google Scholar 

  40. Chen J, Quiñones E and Dagdigian P J 1989 Observation of NH(a 1Δ, v= 1) from the H+N3 Reaction J. Chem. Phys. 90 7603

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported in parts by the SERB, New Delhi, India (FILE NO.: CRG/2021/000171-G). Author P. M. acknowledges CSIR, New Delhi, India, for SRF fellowship. Partial funding from the IoE, BHU, is also acknowledged for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Maiti.

Additional information

Dedicated to Prof. S.P. Bhattacharyya on the occasion of his 75th birthday.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Mahata, P. & Maiti, B. Photodissociation dynamics of HN3 at 248 nm: a trajectory surface hopping study. J Chem Sci 135, 47 (2023). https://doi.org/10.1007/s12039-023-02171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02171-4

Keywords

Navigation