Skip to main content
Log in

Theoretical exploration of bare and oxygen-functionalized Ti3C2 clusters for catalytic NH3 production

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this work, we performed high-level quantum chemical calculations to understand the comparative efficiency of Ti3C2 and oxygen-functionalized Ti3C2 (Ti3C2O2) clusters for the catalytic conversion of N2 to NH3. The global minima structures of N2-free and N2-adsorbed cluster were predicted using the ABC algorithm. Accordingly, N2 can be adsorbed on Ti atoms in a side-on fashion. Binding energy, Wiberg bond index, and Bader charge analyses suggest that the N2-binding ability of the Ti3C2O2 cluster is far better than that of the Ti3C2 cluster. Relative free energy diagrams indicate that cluster-catalyzed NH3 synthesis prefers to follow the distal pathway. The calculation of the energetic span model concludes that catalytic conversion of N2 to NH3 on Ti3C2O2 possesses a lower effective activation barrier than that on the Ti3C2 cluster, which implies that the Ti3C2O2 is a more efficient catalyst than Ti3C2 for the synthesis of NH3. Moreover, from the comparison with other metal clusters like V3C2O2 and Nb3C2O2, we find that although the latter cluster possesses comparatively less energy span N2-philicity of Ti3C2O2 is found to be far higher than that of Nb3C2O2 cluster. Thus, the present study will provide a molecular-level understanding of improved N2 reduction efficiency of the Ti3C2 cluster through O-functionalization.

Graphical Abstract

Herein, we have performed quantum chemical calculations to understand the comparative efficiency of Ti3C2 and oxygen-functionalized Ti3C2 (Ti3C2O2) clusters for the catalytic conversion of N2 to NH3. We found that oxygen functionalization can dramatically enhance the N2 reduction efficiency of the Ti3C2 cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Qing G, Ghazfar R, Jackowski ST, Habibzadeh F, Ashtiani M M, Chen C-P, et al. 2020 Recent Advances and Challenges of Electrocatalytic N2 Reduction to Ammonia Chem. Rev. 120 5437

    Article  CAS  PubMed  Google Scholar 

  2. Shi L, Yin Y, Wang S and Sun H 2020 Rational Catalyst Design for N2 Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency ACS Catal. 10 6870

    Article  CAS  Google Scholar 

  3. Medford A J and Hatzell M C 2017 Photon-Driven Nitrogen Fixation: Current Progress, Thermodynamic Considerations, and Future Outlook ACS Catal. 7 2624

    Article  CAS  Google Scholar 

  4. Wang Z, Hu X, Liu Z, Zou G, Wang G and Zhang K 2019 Recent Developments in Polymeric Carbon Nitride-Derived Photocatalysts and Electrocatalysts for Nitrogen Fixation ACS Catal. 11 10260

    Article  Google Scholar 

  5. Liu Y, Deng P, Wu R, Zhang X, Sun C and Li H 2021 Oxygen Vacancies for Promoting the Electrochemical Nitrogen Reduction Reaction J. Mater. Chem. A 11 6694

    Article  Google Scholar 

  6. Zhuo H-Y, Zhang X, Liang J-X, Yu Q, Xiao H and Li J 2020 Theoretical Understandings of Graphene-Based Metal Single-Atom Catalysts: Stability and Catalytic Performance Chem. Rev. 120 12315

    Article  CAS  PubMed  Google Scholar 

  7. Guo W, Zhang K, Liang Z, Zou R and Xu Q 2019 Electrochemical Nitrogen Fixation and Utilization: Theories, Advanced Catalyst Materials and System Design Chem. Rev. 48 5658

    CAS  Google Scholar 

  8. Ghoshal S, Ghosh A, Roy P, Ball B, Pramanik A and Sarkar P 2022 Recent Progress in Com- putational Design of Single-Atom/Cluster Catalysts for Electrochemical and Solar-Driven N2 Fixation ACS Catal. 12 15541

    Article  CAS  Google Scholar 

  9. Liu J-C, Ma X-L, Li Y, Wang Y-G, Xiao H and Li J 2018 Heterogeneous Fe3 Single-Cluster Catalyst for Ammonia Synthesis via an Associative Mechanism Nat. Commun. 9 1

    Google Scholar 

  10. Ma X-L, Liu J-C, Xiao H and Li J 2018 Surface Single-Cluster Catalyst for N2-to-NH3 Thermal Conversion J. Am. Chem. Soc. 140 46

    Article  CAS  PubMed  Google Scholar 

  11. Ling C, Niu X, Li Q, Du A and Wang J 2018 Metal-free Single Atom Catalyst for N2 Fixation Driven by Visible Light J. Am. Chem. Soc. 140 14161

    Article  CAS  PubMed  Google Scholar 

  12. Einsle O, Tezcan F A, L A Andrade S, Schmid B, Yoshida M, Howard J B and Rees D C 2002 Nitrogenase MoFe-protein at 1.16 Å Resolution: a Central Ligand in the FeMo-cofactor Science 297 1696

    Article  CAS  PubMed  Google Scholar 

  13. Jia H-P and Quadrelli E A 2014 Mechanistic Aspects of Dinitrogen Cleavage and Hy- drogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen Chem. Soc. Rev. 43 547

    Article  CAS  PubMed  Google Scholar 

  14. Ball B, Das P and Sarkar P 2021 Molybdenum Atom-Mediated Salphen-Based Covalent Organic Framework as a Promising Electrocatalyst for the Nitrogen Reduction Reaction: A First-Principles Study J. Phys. Chem. C 125 26061

    Article  CAS  Google Scholar 

  15. Roy P, Pramanik A and Sarkar P 2021 Graphitic Carbon Nitride Sheet: An Efficient Metal- Free Electrocatalyst for Urea Synthesis J. Phys. Chem. Lett. 12 10837

    Article  CAS  PubMed  Google Scholar 

  16. Ghoshal S, Pramanik A and Sarkar P 2021 Towards H2O Catalyzed N2-Fixation over TiO2 Doped Run Clusters (n = 5, 6): A Mechanistic and Kinetic Approach Phys. Chem. Chem. Phys. 23 1527

    Article  CAS  PubMed  Google Scholar 

  17. Kuganathan N, Green J C and Himmel H-J 2021 Dinitrogen Fixation and Activation by Ti and Zr Atoms, Clusters and Complexes New J. Chem. 30 1253

    Article  Google Scholar 

  18. Geng C, Li J, Weiske T and Schwarz H 2018 Ta2+-Mediated Ammonia Synthesis from N2 and H2 at Ambient Temperature Proc. Natl. Acad. Sci. 115 11680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Z-Y, Mou L-H, Wei G-P, Ren Y, Zhang M-Q, Liu Q-Y and He S-G 2019 C-N Coupling in N Fixation by the Ditantalum Carbide Cluster Anions Ta2C4 Inorg. Chem. 58 4701

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Cui J-T, Wang M, Valdivielso D Y, Fielicke A, Hu L-R, et al. 2019 Dinitrogen Fixation and Reduction by Ta3N3H0,1 Cluster Anions at Room Temperature: Hydrogen-Assisted Enhancement of Reactivity J. Am. Chem. Soc. 141 14460

    Article  CAS  PubMed  Google Scholar 

  21. Jiang G-D, Mou L-H, Chen J-J, Li Z-Y and He S-G 2020 Reactivity of Neutral Tantalum Sulfide Clusters Ta3Snn (n = 0–4) with N2 J. Phys. Chem. A 124 7749

    Article  CAS  PubMed  Google Scholar 

  22. Wang M, Zhao C-Y, Zhou H-Y, Zhao Y, Li Y-K and Ma J-B 2021 The Sequential Activation of H2 and N2 Mediated by the Gas-phase Sc3N+ Clusters: Formation of Amido unit J. Chem. Phys. 154 054307

    Article  CAS  PubMed  Google Scholar 

  23. Li Z-Y, Li Y, Mou L-H, Chen J-J, Liu Q-Y, He S-G and Chen H 2020 A Facile N ≡ N Bond Cleavage by the Trinuclear Metal Center in Vanadium Carbide Cluster Anions V3C4 J. Am. Chem. Soc. 142 10747

    Article  CAS  PubMed  Google Scholar 

  24. Ichihashi M, Hanmura T and Odaka H 2021 Dissociative Adsorption of N2 onto Size- Selected Tin+ and TinO+s (n ≤16) toward Nitrogen Fixation J. Phys. Chem. A 125 5048

    Article  CAS  PubMed  Google Scholar 

  25. Goswami B, Pal S and Sarkar P 2007 Theoretical Studies of the Effect of Surface Passivation on Structural, Electronic, and Optical Properties of Zinc Selenide Clusters Phys. Rev. B 76 045323

    Article  Google Scholar 

  26. Saha S, Pal S, Sarkar P, Rosa A L and Frauenheim Th 2012 A Complete Set of Self- Consistent Charge Density-Functional Tight-Binding Parametrization of Zinc Chalcogenides (ZnX; X= O, S, Se, and Te) J. Comput. Chem. 33 1165

    CAS  PubMed  Google Scholar 

  27. Saputro A G, Putra R I D, Maulana A L, Karami M U, Pradana M R, Agusta M K et al. 2019 Theoretical Study of CO2 Hydrogenation to Methanol on Isolated Small Pdx Clusters J. Energy Chem. 35 79

    Article  Google Scholar 

  28. Amrillah T, Hermawan A, Alviani V N, Seh Z W and Yin S 2021 MXenes and their Derivatives as Nitrogen Reduction Reaction Catalysts: Recent Progress and Perspectives Mater. Today Energy 22 100864

    Article  CAS  Google Scholar 

  29. Leong C C, Qu Y, Kawazoe Y, Ho S K and Pan H 2021 MXenes: Novel Electrocatalysts for Hydrogen Production and Nitrogen Reduction Catal. Today 370 2

    Article  CAS  Google Scholar 

  30. Chen G, Ding M, Zhang K, Shen Z, Wang Y, Ma J, et al. 2022 Single- Atomic Ruthenium Active Sites on Ti3C2 MXene with Oxygen-Terminated Surface Synchronize Enhanced Activity and Selectivity for Electrocatalytic Nitrogen Reduction to Ammonia ChemSusChem 15 e202102352

    Article  CAS  PubMed  Google Scholar 

  31. Azofra L M, Li N, MacFarlane D R and Sun C 2022 Promising Prospects for 2D d2–d4 M3C2 Transition Metal Carbides (MXenes) in N2 Capture and Conversion into Ammonia Energy Environ. Sci. 9 2545

    Google Scholar 

  32. Gao Y, Zhuo H, Cao Y, Sun X, Zhuang G, Deng S, et al. 2019 A Theoretical Study of Electrocatalytic Ammonia Synthesis on Single Metal Atom/MXene Chin. J. Catal. 40 152

    Article  CAS  Google Scholar 

  33. Niu K, Chi L, Rosen J and Bjork J 2022 Termination-Accelerated Electrochemical Nitrogen Fixation on Single-Atom Catalysts Supported by MXenes J. Phys. Chem. Lett. 13 2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J and Dolg M 2015 ABCluster: The Artificial Bee Colony Algorithm for Cluster Global Optimization Phys. Chem. Chem. Phys. 17 24173

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J and Dolg M 2016 Global Optimization of Clusters of Rigid Molecules using the Artificial Bee Colony Algorithm Phys. Chem. Chem. Phys. 18 3003

    Article  CAS  PubMed  Google Scholar 

  36. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Montgomery Jr, J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G. A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, ö Farkas, Foresman J B, Ortiz J V, Cioslowski J, Fox D J Gaussian16, Revision A.02

  37. Karaboga D 2005 An Idea Based on Honey Bee Swarm for Numerical Optimization, Tech- nical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  38. Das P and Chattaraj P K 2022 BSinGe4-n+ (n= 0–2): prospective systems containing planar tetracoordinate boron (ptB) J. Chem. Sci. 135 1

    Article  Google Scholar 

  39. Das P, Patra S G and Chattaraj P K 2022 CB6Al0/+: Planar hexacoordinate boron (phB) in the global minimum structure Phys. Chem. Chem. Phys. 24 22634

    Article  CAS  PubMed  Google Scholar 

  40. Becke A D 1993 Density-Functional Thermochemistry. III. The Role of Exact Exchange J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  41. Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields J. Phys. Chem. 98 11623

    Article  CAS  Google Scholar 

  42. Grimme S, Antony J, Ehrlich S and Krieg H 2010 A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu J. Chem. Phys. 132 154104

    Article  PubMed  Google Scholar 

  43. Napoli F, Chiesa M, Livraghi S, Giamello E, Agnoli S, Granozzi G, et al. 2009 The nitrogen photoactive centre in N-doped titanium dioxide formed via interaction of N atoms with the solid. Nature and energy level of the species Chem. Phys. Lett. 477 135

    Article  CAS  Google Scholar 

  44. Ricchiardi G, Damin A, Bordiga S, Lamberti C, Spano G, Rivetti F and Zecchina A 2001 The nitrogen photoactive centre in N-doped titanium dioxide formed via interaction of N atoms with the solid. Nature and energy level of the species J. Am. Chem. Soc. 123 11409

    Article  CAS  PubMed  Google Scholar 

  45. Li M, Wang Y, Wu Y, Wang M and Zhou D 2017 Structure and catalytic activity of a newly proposed titanium species in a Ti-YNU-1 zeolite: a density functional theory study Catal. Sci. Technol. 7 4105

    Article  CAS  Google Scholar 

  46. Li B, Song H, Han F and Wei L 2020 Photocatalytic oxidative desulfurization and denitro- genation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation Appl. Catal. B: Environ. 269 118845

    Article  CAS  Google Scholar 

  47. Andrae D, Haeussermann U, Dolg M, Stoll H and Preuss H 1990 Energy-adjusted ab initio pseudopotentials for the second and third row transition elements Theor. Chim. Acta 77 123

    Article  CAS  Google Scholar 

  48. Krishnan R B J S, Binkley J S, Seeger R and Pople J A 1980 Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys. 72 650

    Article  CAS  Google Scholar 

  49. Wiberg K B 1968 Application of the Pople-Santry-Segal CNDO Method to the Cyclopropy-lcarbinyl and Cyclobutyl Cation and to Bicyclobutane Tetrahedron 24 1083

    Article  CAS  Google Scholar 

  50. Lu T and Chen F 2012 Multiwfn: A Multifunctional Wavefunction Analyzer J. Comput. Chem. 33 580

    Article  PubMed  Google Scholar 

  51. Uhe A, Kozuch S and Shaik S 2011 Automatic Analysis of Computed Catalytic Cycles J. Comput. Chem. 32 978

    Article  CAS  PubMed  Google Scholar 

  52. Kozuch S and Shaik S 2006 A Combined Kinetic-Quantum Mechanical Model for Assessment of Catalytic Cycles: Application to Cross-Coupling and Heck Reactions J. Am. Chem. Soc. 128 3355

    Article  CAS  PubMed  Google Scholar 

  53. Kozuch S and Shaik S 2011 How to Conceptualize Catalytic Cycles? The Energetic Span Model Acc. Chem. Res. 44 101

    Article  CAS  PubMed  Google Scholar 

  54. Kozuch S and Shaik S 2008 Kinetic-Quantum Chemical Model for Catalytic Cycles: The Haber-Bosch Process and the Effect of Reagent Concentration J. Phys. Chem. A 112 6032

    Article  CAS  PubMed  Google Scholar 

  55. Kozuch S 2012 A Refinement of Everyday Thinking: The Energetic Span Model for Kinetic Assessment of Catalytic Cycles Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 795

    CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support from the National Post-Doctoral Fellowship [Sanction PDF/2021/000107], the UGC Midcareer Award Grant [Sanction F.19-257/2021(BSR)], and CSIR (HRDG) [Sanction no. 01(3086)/21/EMR-II], Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Sarkar.

Additional information

This paper is dedicated to Professor S. P. Bhattacharyya on the happy occasion of his 75th birth anniversary.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Ghoshal, S. & Sarkar, P. Theoretical exploration of bare and oxygen-functionalized Ti3C2 clusters for catalytic NH3 production. J Chem Sci 135, 48 (2023). https://doi.org/10.1007/s12039-023-02169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02169-y

Keywords

Navigation