Skip to main content
Log in

Encapsulation of curcumin in alginate microbeads (AMB) for control release of curcumin

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Curcumin, a molecule with medicinal properties, has been encapsulated in alginate microbeads through the ion gelation method. The size of the microbeads were 500-700 microns and stable under normal condition. FTIR and thermal analysis suggested that curcumin was successfully loaded in the microbeads. 110 mg of curcumin was loaded per gram of dry weight of microbeads, whereas the encapsulation efficiency was 71%. Curcumin release from these microbeads was studied in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The release of curcumin was higher and faster in SIF compared to SGF. Higher swelling of microbeads in SIF was responsible for this release behaviour. The absorption of the food particles mostly occurs in the intestinal region, and these microbeads easily travel through the gastric region without much degradation. Curcumin suffers degradation via auto-oxidation in the biological medium; thus, the release of curcumin in the intestinal region will help its maximum absorption.

Graphical abstract

Curcumin was encapsulated in alginate microbeads through the ion gelation method. The size of the microbeads was 500-700 microns. Curcumin release from these microbeads was considerably less in simulated gastric fluid (SGF) than simulated intestinal fluid (SIF) and thus facilitated maximum absorption of curcumin in the intestinal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aggarwal B B, Sundaram C, Malani N and Ichikawa H 2007 Curcumin: The Indian solid gold. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Advances In Experimental Medicine And Biology B B Aggarwal, Y J Surh and S Shishodia (Eds.) Vol. 595 (Boston, MA: Springer)

  2. Chattopadhyay I, Biswas K, Bandyopadhyay U and Banerjee R K 2004 Turmeric and curcumin: biological actions and medicinal applications Curr. Sci. 87 44

    CAS  Google Scholar 

  3. Lal J 2012 Turmeric, curcumin and our life: A review Bull. Environ. Pharmacol. Life Sci. 1 11

    Google Scholar 

  4. Sharifi-Rad J, Rayess Y E, Rizk A A, Sadaka C, Zgheib R, Zam W, et al. 2020 Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications Front. Pharmacol. 11 01021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurita T and Makino Y 2013 Novel curcumin oral delivery systems Anticancer Res. 33 2807

    CAS  PubMed  Google Scholar 

  6. Anand P, Kunnumakkara A B, Newman R A, Bharat B and Aggarwal B B 2007 Bioavailability of curcumin: Problems and promises Mol. Pharm. 4 807

    Article  CAS  PubMed  Google Scholar 

  7. Shen L and Ji H-F 2012 The pharmacology of curcumin: Is it the degradation products? Trends Mol. Med. 18 138

    Article  CAS  PubMed  Google Scholar 

  8. Pawar Y B, Purohit H, Valicherla G R, Munjal B, Lale S V, Patel S B and Bansal A K 2012 Novel lipid based oral formulation of curcumin: Development and optimization by design of experiments approach Int. J. Pharm. 436 617

    Article  CAS  PubMed  Google Scholar 

  9. Liu C, Yang X, Wu W, Long Z, Xiao H, Luo F, et al. 2018 Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased invitro bioactivity and in vivo bioavailability Food Hydrocoll. 77 834

    Article  CAS  Google Scholar 

  10. Gupta A, Costa A P, Xu X, Lee S-L, Cruz CN, Bao Q and Burgess D J 2020 Formulation and characterization of curcumin loaded polymeric micelles produced via continuous processing Int. J. Pharm. 583 119340

    Article  CAS  PubMed  Google Scholar 

  11. Kharat M, Du Z, Zhang G and McClements D J 2017 Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment J. Agric. Food Chem. 65 1525

    Article  CAS  PubMed  Google Scholar 

  12. Mohanty C and Sahoo S K 2010 The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation Biomaterials 31 6597

    Article  CAS  PubMed  Google Scholar 

  13. Peng S, Li Z, Zou L, Liu W, Liu C and McClements D J 2018 Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method Food Funct. 9 1829

    Article  CAS  PubMed  Google Scholar 

  14. Li Q, Zhai W, Jiang Q, Huang R, Liu L, Dai J, et al. 2015 Curcumin–piperine mixtures in self-micro emulsifying drug delivery system for ulcerative colitis therapy Int. J. Pharm. 490 22

    Article  CAS  PubMed  Google Scholar 

  15. Munjal B, Pawar Y B, Patel S B and Bansal A K 2011 Comparative oral bioavailability advantage from curcumin formulations Drug Deliv. Transl. Res. 1 322

    Article  CAS  PubMed  Google Scholar 

  16. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R and Srinivas P S 1998 Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers Planta Medica 64 353

    Article  CAS  PubMed  Google Scholar 

  17. Hu L, Kong D, Hu Q, Yang X and Xu H 2017 Preparation and optimization of a novel microbead formulation to improve solubility and stability of curcumin Part. Sci. Technol. 35 448

    Article  CAS  Google Scholar 

  18. Song S, Wang Z, Qian Y, Zhang L and Luo E 2012 The release rate of curcumin from calcium alginate beads regulated by food emulsifiers J. Agric. Food Chem. 60 4388

    Article  CAS  PubMed  Google Scholar 

  19. Sookkasem A, Chatpun S, Yuenyongsawad S and Wiwattanapatapee R 2015 Alginate beads for colon specific delivery of self-emulsifying curcumin J. Drug Deliv. Sci. Technol. 29 159

    Article  CAS  Google Scholar 

  20. Uyen N T T, Abdul Hamid Z A, Thi L A and Ahmad N B 2020 Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery J. Drug Deliv. Sci. Technol. 58 101796

    Article  Google Scholar 

  21. Lee K Y and Mooney D J 2012 Alginate: properties and biomedical applications Prog. Polym. Sci. 37 106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemoine D, Wauters F, Bouchend’homme S and Préat V 1998 Preparation and characterization of alginate microspheres containing a model antigen Int. J. Pharm. 176 9

    Article  CAS  Google Scholar 

  23. Shilpa A, Agrawal S S and Ray A K 2003 Controlled delivery of drugs from alginate matrix J. Macromol. Sci. Part C: Polym. Rev. 43 187

    Article  Google Scholar 

  24. Huang X, Xiao Y and Lang M 2012 Micelles/sodium-alginate composite gel beads: A new matrix for oral drug delivery of indomethacin Carbohydr. Polym. 87 790

    Article  CAS  PubMed  Google Scholar 

  25. Rostami E 2022 Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery Polym. Bull. 79 6885

    Article  CAS  Google Scholar 

  26. Uyen N T T, Hamid Z A A, Tram N X T and Ahmad N B 2020 Fabrication of alginate microspheres for drug delivery: A review Int. J. Biol. Macromol. 153 1035

    Article  CAS  PubMed  Google Scholar 

  27. Gunasekaran S, Natarajan R K, Natarajan S and Rathikha R 2008 Structural investigation on curcumin Asian J. Chem. 20 2903

    CAS  Google Scholar 

  28. Daemi H and Barikani M 2012 Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles Sci. Iran. 19 2023

    Article  CAS  Google Scholar 

  29. Sreekanth Reddy O, Subha M C S, Jithendra T, Madhavi C and Rao K C 2021 Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery J. Pharm. Anal. 11 191

    Article  CAS  PubMed  Google Scholar 

  30. Sun B, Tian Y, Chen L and Jin Z 2018 Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin Food Hydrocoll. 77 911

    Article  CAS  Google Scholar 

  31. Laurienzo P, Malinconico M, Motta A and Vicinanza A 2005 Synthesis and characterization of a novel alginate-poly(ethylene glycol) graft copolymer Carbohydr. Polym. 62 274

    Article  CAS  Google Scholar 

  32. Parikh A and Madamwar D 2006 Partial characterization of extracellular polysaccharides from cyanobacteria Bioresour. Technol. 97 1822

    Article  CAS  PubMed  Google Scholar 

  33. Hieu T Q and Thanh Thao D T 2019 Enhancing the solubility of curcumin metal complexes and investigating some of their biological activities J. Chem. 2019 8082195

    Article  Google Scholar 

  34. Schneider C, Gordon O N, Edwards R L and Luis P B 2015 Degradation of curcumin: From mechanism to biological implications J. Agric. Food Chem. 63 7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang H, Gong X, Guo X, Liu C, Fan Y-Y, Zhang J, et al. 2019 Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads Int. J. Biol. Macromol. 121 1118

    Article  CAS  PubMed  Google Scholar 

  36. Marques M R C, Loebenberg R and Almukainzi M 2011 Simulated biological fluids with possible application in dissolution testing Dissolut. Technol. https://doi.org/10.14227/DT180311P15

    Article  Google Scholar 

  37. Yotsuyanagi T, Ohkubo T, Ohhashi T and Ikeda K 1987 Calcium-induced gelation of alginic acid and pH-sensitive reswelling of dried gels Chem. Pharm. Bull. 35 1555

    Article  CAS  Google Scholar 

  38. Caballero F, Foradada M, Miñarro M, Pérez-Lozano P, García-Montoya E, Ticó J R and Suñé-Negre J M 2014 Characterization of alginate beads loaded with ibuprofen lysine salt and optimization of the preparation method Int. J. Pharm. 460 181

    Article  CAS  PubMed  Google Scholar 

  39. Shiraishi S, Imai T and Otagiri M 1993 Controlled-release preparation of indomethacin using calcium alginate gel Biol. Pharm. Bull. 16 1164

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Wei Z and Xue C 2022 The presence of propylene glycol alginate increased the stability and intestine-targeted delivery potential of carboxymethyl starch-stabilized emulsions Food Res. Int. 157 111387

    Article  CAS  PubMed  Google Scholar 

  41. Yuan Y, Ma M, Zhang S, Wang D and Xu Y 2022 pH-driven self-assembly of alcohol-free curcumin-loaded propylene glycol alginate nanoparticles Int. J. Biol. Macromol. 195 302

    Article  CAS  PubMed  Google Scholar 

  42. Hua S 2020 Advances in oral drug delivery for regional targeting in the gastrointestinal tract - Influence of physiological, pathophysiological and pharmaceutical factors Front. Pharmacol. 11 524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chanburee S and Tiyaboonchai W 2018 Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers J. Biomed. Mater. Res. Part B: Appl. Biomater. 106 734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. R. P. Das of RPCD for helping in the SEM experiments. Thanks to Drs. Juby K Ajish, RPCD, and Priyanka Ruz, ChD, for helping in TG and FTIR analysis, respectively. The support and encouragement from Dr. Awadhesh Kumar, Head RPCD, BARC, and Dr. A. K. Tyagi, Director Chemistry group, BARC, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanu Barik.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, S.A.M., Barik, A. Encapsulation of curcumin in alginate microbeads (AMB) for control release of curcumin. J Chem Sci 135, 39 (2023). https://doi.org/10.1007/s12039-023-02159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02159-0

Keywords

Navigation