Skip to main content
Log in

Density matrix renormalization group (DMRG) for interacting spin chains and ladders

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The density matrix renormalization group (DMRG) method generates the low-energy states of linear systems of N sites with a few degrees of freedom at each site by starting with a small system and adding sites step by step while keeping the dimension of the truncated Hilbert space constant. DMRG algorithms are adapted to open chains with inversion symmetry at the central site, to cyclic chains, to weakly coupled chains, and to low-T thermodynamics. The motivation is physical properties rather than energy accuracy. The algorithms are applied to the edge states of linear Heisenberg antiferromagnets with spin \(S \ge 1/2\), the quantum phases of a frustrated spin-1/2 chain with an exchange between first and second neighbors, a spin-1/2 ladder with skewed rungs, and the spin-Peierls transitions of an organic and an inorganic crystal.

Graphical abstract

The density matrix renormalization group is a numerical technique for studying the ground state properties of low-dimensional quantum many body systems. Its application to the quantum spin chain and ladder systems is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. White S R 1992 Density Matrix Formulation for Quantum Renormalization Groups Phys. Rev. Lett. 69 2863

    CAS  PubMed  ADS  Google Scholar 

  2. Schollwöck U 2005 The density-matrix renormalization group Rev. Mod. Phys. 77 259

    MathSciNet  ADS  Google Scholar 

  3. Hallberg K 2006 New trends in density matrix renormalization Adv. Phys. 55 477

    CAS  ADS  Google Scholar 

  4. Vidal G 2007 Entanglement Renormalization Phys. Rev. Lett. 99 220405

    CAS  PubMed  ADS  Google Scholar 

  5. Chepiga N and White S R 2019 Comb tensor networks Phys. Rev. B 99 235426

    CAS  ADS  Google Scholar 

  6. Dey D, Kumar M and Soos Z G 2016 Boundary-induced spin density waves in linear Heisenberg antiferromagnetic chains with S \(\ge\)Phys. Rev. B 94 144417

    ADS  Google Scholar 

  7. Kumar M, Ramasesha S and Soos Z G 2009 Tuning the bond-order wave phase in the half-filled extended Hubbard model Phys. Rev. B 79 035102

    ADS  Google Scholar 

  8. Kumar M, Soos Z G, Sen D and Ramasesha S 2010 Modified DMRG algorithm for the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange: Comparison with field theory at large \(J_2/J_1\) Phys. Rev. B 81 104406

    ADS  Google Scholar 

  9. Saha S K, Dey D, Kumar M and Soos Z G 2019 Hybrid exact diagonalization and density matrix renormalization group approach to the thermodynamics of one-dimensional quantum models Phys. Rev. B 99 195144

    CAS  ADS  Google Scholar 

  10. Haldane F D M 1983 Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model Phys. Lett. A 93 464

    MathSciNet  ADS  Google Scholar 

  11. White S R and Huse D A 1993 Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S = 1 Heisenberg chain Phys. Rev. B 48 3844

    CAS  ADS  Google Scholar 

  12. Sørensen E H and Affleck I A 1994 Equal-time correlations in Haldane-gap antiferromagnets Phys. Rev. B 49 15771

    ADS  Google Scholar 

  13. Ng T K 1994 Edge states in antiferromagnetic quantum spin chains Phys. Rev. B 50 555

    CAS  ADS  Google Scholar 

  14. Hamada T, Kane J, Nakagawa S and Natsume Y 1988 Exact Solution of the Ground State for the Uniformly Distributed RVB in One-Dimensional Spin-1/2 Heisenberg Systems with Frustration J. Phys. Soc. Japan 57 1891

    ADS  Google Scholar 

  15. Majumdar C K and Ghosh D K 1969 On Next-Nearest-Neighbor Interaction in Linear Chain. II J. Math. Phys. 10 1399

    MathSciNet  ADS  Google Scholar 

  16. Parvej A and Kumar M 2016 Degeneracies and exotic phases in an isotropic frustrated spin-1/2 chain J. Magn. Magn. Mater. 401 96

    CAS  ADS  Google Scholar 

  17. Soos Z G, Parvej A and Kumar M 2016 Numerical study of incommensurate and decoupled phase of spin-1/2 chains with isotropic exchange \(J_1\), \(J_2\) between first and second neighbors J. Phys. Condens. Matter 28 175603

    PubMed  ADS  Google Scholar 

  18. Parvej A and Kumar M 2017 Multipolar phase in frustrated spin-1/2 and spin-1 chains Phys. Rev. B 96 054413

    ADS  Google Scholar 

  19. Dey D, Maiti D and Kumar M 2016 An Efficient Density Matrix Renormalization Group Algorithm for Chains with Periodic Boundary Condition Pap. Phys. 8 080006

    Google Scholar 

  20. Kumar M, Parvej A, Thomas S, Ramasesha S and Soos Z G 2016 Efficient density matrix renormalization algorithm to study Y junctions with integer and half integer spin Phys. Rev. B 93 075107

    ADS  Google Scholar 

  21. White S R and Affleck I 1996 Dimerization and incommensurate spiral spin correlations in the zigzag spin chain: Analogies to the Kondo Lattice Phys. Rev. B 54 9862

    CAS  ADS  Google Scholar 

  22. Okamoto K and Nomura K 1992 Fluid-dimer critical point in S = 1/2 antiferromagnetic Heisenberg chain with next nearest neighbor interactions Phys. Lett. A 169 433

    ADS  Google Scholar 

  23. Nakano H and Terai A 2009 Reexamination of Finite-Lattice Extrapolation of Haldane Gaps J. Phys. Soc. Jpn. 78 014003

    ADS  Google Scholar 

  24. Fáth G, Ö Legaza, Lajkó P and Iglói F 2006 Logarithmic delocalization of end spins in the S = 3/2 antiferromagnetic Heisenberg chain Phys. Rev. B 73 214447

    ADS  Google Scholar 

  25. Hallberg K, Wang X Q G, Horsch P and Moreo A 1996 Critical Behavior of the S = 3/2 antiferromagnetic Heisenberg chain Phys. Rev. Lett. 76 4955

    CAS  PubMed  ADS  Google Scholar 

  26. Affleck I, Gepner D, Schultz H J and Ziman T 1989 Critical behavior of spin-s Heisenberg antiferromagnetic chains: analytic and numerical results J. Phys. A Math. Gen. 22 511

    ADS  Google Scholar 

  27. Itoi C and Qin S 2001 Strongly reduced gap in the zigzag spin chain with a ferromagnetic interchain coupling Phys. Rev. B 63 224423

    ADS  Google Scholar 

  28. Furukawa S, Sato M, Onoda S and Furusaki A 2012 Ground-state phase diagram of a spin-1/2 frustrated ferromagnetic XXZ chain: Haldane dimer phase and gapped/gapless chiral phases Phys. Rev. B 86 094417

    ADS  Google Scholar 

  29. Chitra R, Pati S K, Krishnamurthy H R, Sen D and Ramasesha S 1995 Density matrix renormalization group studies of spin-1/2 Heisenberg system with dimerization and frustration Phys. Rev. B 52 6581

    CAS  ADS  Google Scholar 

  30. Eggert S 1996 Numerical evidence for multiplicative logarithmic corrections from marginal operators Phys. Rev. B 54 R9612

    CAS  ADS  Google Scholar 

  31. Kumar M, Parvej A and Soos Z G 2015 Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange J. Phys. Condens. Matter. 27 316001

    PubMed  Google Scholar 

  32. Pati S K, Ramasesha S and Sen D 1997 Low-lying excited states and low-temperature properties of an alternating spin-1-spin-1/2 chain: A density-matrix renormalization-group study Phys. Rev. B 55 8894

    CAS  ADS  Google Scholar 

  33. Saha S K, Maiti D, Kumar M and Soos Z G 2022 Density matrix renormalization group approach to the low temperature thermodynamics of correlated 1D fermionic models J. Mag. Mag. Mat. 552 169150

    CAS  Google Scholar 

  34. Saha S K, Roy M S, Kumar M and Soos Z G 2020 Modeling the spin-Peierls transition of spin-\(\frac{1}{2}\) chains with correlated states: \({J}_{1}{{-}}{J}_{2}\) model \({{\rm CuGeO}}_{3}\), and \({{\rm TTF}}--{{\rm CuS}}_{4}{{\rm C}}_{4}{({{\rm CF}}_{3})}_{4}\) Phys. Rev. B 101 054411

    CAS  ADS  Google Scholar 

  35. Jacobs I S, Bray J W, Hart Jr H R, Interrante L V, Kasper J S, Watkins G D, Prober D E and Bonner J C 1976 Spin-Peierls transitions in magnetic donor-acceptor compounds of tetrathiafulvalene (TTF) with bisdithiolene metal complexes Phys. Rev. B 14 3036

    CAS  ADS  Google Scholar 

  36. Hase M, Terasaki I and Uchinokura K 1993 Observation of the spin-Peierls transition in linear \({{\rm Cu}}^{2+}\) (spin-1/2) chains in an inorganic compound \({{\rm CuGeO}}_{3}\) Phys. Rev. Lett. 70 3651

    CAS  PubMed  ADS  Google Scholar 

  37. Hase M, Terasaki I, Uchinokura K, Tokunaga M, Miura N and Obara H 1993 Magnetic phase diagram of the spin-Peierls cuprate \({{\rm CuGeO}}_{3}\) Phys. Rev. B 48 9616

    CAS  ADS  Google Scholar 

  38. Fabricius K, Klümper A, Löw U, and Büchner B, Lorenz T, Dhalenne G and Revcolevschi A 1998 Reexamination of the microscopic couplings of the quasi-one-dimensional antiferromagnet \({{\rm CuGeO}}_{3}\) Phys. Rev. B 57 1102

    CAS  ADS  Google Scholar 

  39. Riera J and Dobry A 1995 Magnetic susceptibility in the spin-Peierls system \({{\rm CuGeO}}_{3}\) Phys. Rev. B 51 16098

    CAS  ADS  Google Scholar 

  40. Lorenz T, Ammerahl U, Ziemes R, Büchner B, Revco-levschi A and Dhalenne G 1996 Thermodynamic properties of the incommensurate phase of \(\text{ CuGeO}_{3}\) Phys. Rev. B 54 R15610

    CAS  ADS  Google Scholar 

  41. Liu X, Wosnitza J, Löhneysen H and Kremer R 1995 Specific heat of the spin-Peierls compound \(\text{ CuGeO}_{3}\) Z. Phys. B 98 163

    CAS  ADS  Google Scholar 

  42. Thomas S, Ramasesha S, Hallberg K and Garcia D 2012 Fused azulenes as possible organic multiferroics Phys. Rev. B 86 180403

    ADS  Google Scholar 

  43. Giri G, Dey D, Kumar M, Ramasesha S and Soos Z G 2017 Quantum phases of frustrated two-leg spin-\(\frac{1}{2}\) ladders with skewed rungs Phys. Rev. B 95 224408

    ADS  Google Scholar 

  44. Das S, Dey D, Kumar M and Ramasesha S 2021 Quantum phases of a frustrated spin-1 system: The 5/7 skewed ladder Phys. Rev. B 104 125138

    CAS  ADS  Google Scholar 

  45. Das S, Dey D, Ramasesha S and Kumar M 2021 Quantum phases of spin-1 system on 3/4 and 3/5 skewed ladders J. Appl. Phys. 129 223902

    CAS  ADS  Google Scholar 

  46. Dey D, Das S, Kumar M and Ramasesha S 2020 Magnetization plateaus of spin-\(\frac{1}{2}\) system on a \(5/7\) skewed ladder Phys. Rev. B 101 195110

    CAS  ADS  Google Scholar 

  47. Oshikawa M, Yamanaka M and Affleck I 1997 Magnetization Plateaus in Spin Chains: “Haldane Gap” for Half-Integer Spins Phys. Rev. Lett. 78 1984

    CAS  ADS  Google Scholar 

  48. Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Experimental Observation of the \(1/3\) Magnetization Plateau in the Diamond-Chain Compound \({{\rm Cu}}_{3}({{\rm CO}}_{3}{)}_{2}({{\rm OH}}{)}_{2}\) Phys. Rev. Lett. 94 227201

    CAS  PubMed  ADS  Google Scholar 

  49. Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2006 Kikuchi et al Reply: Experimental Observation of the 1/3 Magnetization Plateau in the Diamond-Chain Compound \({{\rm Cu}}_{3}({{\rm CO}}_{3}{)}_{2}({{\rm OH}}{)}_{2}\) Phys. Rev. Lett. 97 089702

    ADS  Google Scholar 

  50. Gu B and Su G 2006 Comment on “Experimental Observation of the \(1/3\)Magnetization Plateau in the Diamond Chain Compound \({{\rm Cu}}_{3}({{\rm CO}}_{3}{)}_{2}({{\rm OH}} {)}_{2}\)” Phys. Rev. Lett. 97 089701

    PubMed  ADS  Google Scholar 

  51. Okunishi K and Tonegawa T 2003 Fractional \({S}^{z}\)  excitation and its bound state around the 1/3 plateau of the \(S=1/2\)  Ising-like zigzag \({{\rm XXZ}}\) chain Phys. Rev. B 68 224422

    ADS  Google Scholar 

  52. Okunishi K and Tonegawa T 2003 Magnetic Phase Diagram of the S=1/2 Antiferromagnetic Zigzag Spin Chain in the Strongly Frustrated Region: Cusp and Plateau J. Phys. Soc. Japan 72 479

    CAS  ADS  Google Scholar 

  53. Heidrich M F, Sergienko I A, Feiguin A E and Dagotto E R 2007 Universal emergence of the one-third plateau in the magnetization process of frustrated quantum spin chains Phys. Rev. B 75 064413

    ADS  Google Scholar 

  54. Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L and Muller D A 2011 Grains and grain boundaries in single-layer graphene atomic patchwork quilts Nature 469 389

    CAS  PubMed  ADS  Google Scholar 

  55. Kochat V, Tiwary C S, Biswas T, Ramalingam G, Hsieh K, Chattopadhyay K, Raghavan S, Jain M and Ghosh A 2015 Magnitude and Origin of Electrical Noise at Individual Grain Boundaries in Graphene Nano Lett. 16 562

    PubMed  ADS  Google Scholar 

  56. Krishna B, Tathagatha B, Priyadarshini G, Swathi S, Abhishek M, Rohan M, Ritesh S, Manish J, Manoj V, Rudra P and Srinivasan R 2018 Reversible defect engineering in graphene grain boundaries Nat. Commun. 10 1090

    Google Scholar 

Download references

Acknowledgements

S. Ramasesha acknowledges the Indian National Science Academy and DST-SERB for supporting this work. Manoranjan Kumar acknowledges the SERB for financial support through Project File No. CRG/2020/000754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kumar.

Additional information

Dedicated to Prof. S.P. Bhattacharyya on the occasion of his 75th birthday.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Appendix

Appendix

1.1 Implementation of the conventional DMRG algorithm

In order to understand the implementation of the DMRG method, consider an antiferromagnetic Heisenberg spin chain with Hamiltonian

$$\begin{aligned} H = \sum _{<ij>} J_{ij} (S_{i}^zS_{j}^z+\frac{1}{2}(S_{i}^+S_{j}^-+S_{i}^-S_{j}^+)) \end{aligned}$$

where \(J_{ij}\) is the exchange interaction, \(S_{i}^+\) and \(S_{j}^-\) are the raising and lowering operators at sites i and j, respectively. For this system the DMRG method can be discussed in two parts (a) an infinite DMRG algorithm and (b) finite DMRG algorithm.

1.2 A. Infinite DMRG algorithm

  1. 1.

    First, we consider a four-site spin chain (superblock) for which the Hamiltonian can be diagonalized using the exact diagonalization method. This superblock is divided into two parts, with two sites forming a left block and the other two sites forming a right block. The Hamiltonian matrix for this superblock is constructed by using the constant \(S^{z}\) basis (Figure 1).

  2. 2.

    The ground state of the superblock \(|\psi _{G_4}\rangle\) is obtained by diagonalizing the Hamiltonian matrix and it is written as a linear combination of the direct product of the Fock space of the left and right blocks [{\({L_{2}}\)},{\({R_{2}}\)}] each with two sites.

    $$\begin{aligned} |\psi _{G_4}\rangle = \sum _{L_{2}} \sum _{R_{2}} C_{L_{2}R_{2}} |L_{2}\rangle |R_{2}\rangle . \end{aligned}$$
  3. 3.

    By tracing out the states of the right block, the reduced density matrix of the left block is created, and its matrix elements are given by

    $$\begin{aligned} {[}\rho _{2}]_{L_{2} L'_{2}} = \sum _{R_{2}} C_{L_{2}R_{2}} C_{L_{2}' R_{2}}. \end{aligned}$$
  4. 4.

    All the eigenvalues and the corresponding eigenvectors of the reduced density matrix are obtained by diagonalizing \(\rho _{_2}\). Only ‘m’ eigenvectors of the reduced density matrix corresponding to the highest eigenvalues are stored as columns of a matrix \({\hat{O}}_{_2}\). If the Fock space of the left block is less than ‘m’ at this point, then all the density matrix eigenvectors are kept.

  5. 5.

    The Hamiltonian matrix of two sites \({\hat{H}}_{_{2}}\) is built in Fock space basis {\({L_{_2}}\)} and this matrix is transformed to a density matrix eigenvectors basis by a similarity transformation \({\tilde{H}} = {\hat{O}}_{_2}^+{\hat{H}}_{_2} {\hat{O}}_{_2}\).

  6. 6.

    The spin operators such as \({\hat{S}}_{_i}^z\), \({\hat{S}}_{_i}^+\), \({\hat{S}}_i^-\) at any site i in the left block of the chain are expressed as matrices in the Fock space basis of the left block and then transformed them into DMEV basis i.e. \({\tilde{S}}_i^z = {\hat{O}}_{_2}^+{\hat{S}}_i^z {\hat{O}}_{_2}\), \({\tilde{S}}_i^+ = {\hat{O}}_{_2}^+{\hat{S}}_i^+ {\hat{O}}_{_2}\) and \({\tilde{S}}_i^- = {\hat{O}}_{_2}^+{\hat{S}}_i^- {\hat{O}}_{_2}\). If the superblock has an inversion symmetry at the centre of the full system then the site operators at the right block are same as those of the corresponding sites on the left block. Otherwise we must go through steps 4 to 8 for the right block.

  7. 7.

    The system size is augmented to six by adding two sites in the middle of the superblock, where the augmented system is made up of the left block, newly added site to the left block, right block and the newly added site to the right block. The Hamiltonian corresponding to this augmented system is given by

    $$\begin{aligned} {\hat{H}}_{_6} = {\tilde{H}}_{_2} + {\tilde{H}}'_{_2} + {\tilde{S}}_{_2} \cdot {\hat{S}}_{_3} + {\hat{S}}_{_3} \cdot {\hat{S}}'_{_3} + {\hat{S}}'_3 \cdot {\tilde{S}}'_{_2}, \end{aligned}$$
  8. 8.

    The Hamiltonian matrix \({\hat{H}}_{_6}\) for the 6 site system is built in a direct product basis set \(|\mu \sigma \sigma ' \mu '\rangle\), where \(|\mu \rangle\) and \(|\mu '\rangle\) are the density matrix eigenvectors that serve as the basis for the left and right blocks, respectively, and \(|\sigma \rangle\) and \(|\sigma '\rangle\) are the Fock space basis of the newly added sites 3 and \(3'\). The Hamiltonian matrix corresponding to this 6 site system is

    $$\begin{aligned} \langle \mu \sigma \sigma '\mu '|{\hat{H}}_{_6}|\nu \tau \tau '\nu '\rangle= & {} \langle \mu _{_{2}}|{\tilde{H}}_{_2}^{L}|\nu _{_{2}}\rangle \delta _{\sigma \tau }\delta _{\sigma '\tau '}\delta _{\mu _{_{2}}'\nu _{_{2}}'} + \langle \mu _{_{2}}'|{\tilde{H}}_{_2}^{R}|\nu _{_{2}}'\rangle \delta _{\sigma \tau }\delta _{\sigma '\tau '}\delta _{{\mu _{_{2}} \nu _{_{2}}}} \\ {}{} & {} + \langle \sigma |{\hat{S}}_{_{3}}|\tau \rangle \cdot \langle \sigma '|{\hat{S}}_{_{3}}'|\tau '\rangle \delta _{\mu _{_{2}}'\nu _{_{2}}'} \delta _{\mu _{_{2}}\nu _{_{2}}} + \langle \mu _{_{2}}|{\tilde{S}}_{_{2}}|\nu _{_{2}}\rangle \cdot \langle \sigma |{\hat{S}}_{_{3}}|\tau \rangle \delta _{\mu _{_{2}}'\nu _{_{2}}'} \delta _{\sigma '\tau '} \\ {}{} & {} + \langle \mu _{_{2}}'|{\tilde{S}}_{_{2}}'|\nu _{_{2}}'\rangle \cdot \langle \sigma '|{\hat{S}}_{_{3}}'|\tau '\rangle \delta _{\mu _{_{2}}\nu _{_{2}}}\delta _{\sigma \tau } . \end{aligned}$$
  9. 9.

    The ground state \(|\psi _{G_{6}}\rangle\) is obtained by diagonalizing the \({\hat{H}}_{6}\) matrix and the density matrix for new left block \(\rho _{3}^{L}\) can be constructed as

    $$\begin{aligned} \langle \mu \sigma |\rho _{_{3}}^L|\nu \tau \rangle = \sum _{\mu _{_{2}}'\sigma '} C_{\mu _{_{2}}\sigma \sigma '\mu _{_{2}}'}C_{\nu _{_{2}}\tau \sigma '\mu _{_{2}}'}. \end{aligned}$$
  10. 10.

    By diagonalizing the density matrix \(\rho _{_3}^{L}\), ‘m’ DMEVs {\({\mu _{_{3}}}\)} corresponding to the largest eigenvalues are obtained and stored as columns of a matrix \({\hat{O}}_{_3}\). The left block Hamiltonian \(H_{3}^L\) and the spin operators of the left block are renormalized to the DMEV basis, as described in steps 5 and 6.

  11. 11.

    We repeat the steps from 7 to 9 to get the density matrix for 4 sites left block (\(\rho _{_4}^{L}\)) and whole process is repeated till the desired system size N is reached.

1.3 B. Finite DMRG algorithm

A well-known iterative algorithm called the finite DMRG method can increase the accuracy of the infinite DMRG method. The primary flaw in the infinite DMRG method is that the density matrices we create at each iteration of the calculation are not the density matrices of the final size system, but rather those of systems with intermediate sizes. Thus we can increase the accuracy of the eigenstates of the model Hamiltonian by building density matrices of the full system size. In the finite DMRG method, the system size remains constant, while the size of left and right blocks vary at each step of the calculation. The finite DMRG procedure begins when the infinite DMRG procedure reaches a desired system size of N sites, with the left and right blocks each having \((N/2-1)\) sites and the middle of the system has two bare sites as shown in the first step of Figure 17. The initial density matrices calculated from the infinite DMRG procedure are \(\rho _{k}^{(0)\,L}\), \(\rho _{k}^{(0)\,R}\) \(k = 2, 3, 4 ..., (N/2-1)\), where (0) stands for the iteration number of the finite DMRG method. All of the density matrices and the site matrices are stored during the finite system iteration.

Figure 17
figure 17

Schematic representation of the finite DMRG algorithm open circles indicate the bare sites. Black rectangular boxes represent the system size with N sites whereas the blue boxes represent the left and right blocks.

The procedure for the finite DMRG calculations is as follows:

  1. 1.

    Using the \(|\psi _{_{G_{N}}}\rangle\) in the basis \(|\mu _{_{N/2-1}}\sigma \sigma '\mu _{_{N/2-1}}'\rangle\) the density matrix \(\rho _{_{N/2}}\) is constructed and \(H_{_{N/2}}\) and all site operators for N/2 site are obtained in the DMEV basis of N/2 sites.

  2. 2.

    The Hamiltonian matrix of the N site system is now obtained in the basis \(|\mu _{_{N/2}}\sigma \sigma '\mu _{_{N/2-2}}'\rangle\). The ground state of the N site system is obtained in direct product basis of the DMEV of \(\rho _{_{N/2}}^{(0)\,L}\), \(\rho _{_{N/2-2}}^{(0)\,R}\), and Fock space basis of the two bare sites using the density matrix \(\rho _{_{N/2}}^{(0)\,L}\) and \(\rho _{_{N/2-2}}^{(0)\,R}\) (Figure 17).

  3. 3.

    Using the ground state of the N site system, we construct the density matrix \(\rho _{_{N/2+1}}^{(0)\,L}\) for the \((N/2+1)\) sites left block.

  4. 4.

    We can as before obtain the ground state of the N site system in the direct product basis of DMEVs of the new density matrix of the left block \(\rho _{_{N/2+1}}^{(0)\,L}\), old density matrix of right block \(\rho _{_{N/2-3}}^{(0)\,R}\) and Fock space basis of the two bare sites.

  5. 5.

    This process is repeated until the right block has a single site and the ground state of N site system is formed by the direct product basis of the DMEVs of \(\rho _{_{N/2-3}}^{(0)\,L}\), Fock space basis of two bare sites and one site in the right block.

  6. 6.

    Using the ground state of the Hamiltonian in the basis \(|\mu _{_{N/2-3}}^{(0)\,L}\sigma \sigma '\sigma ''\rangle\) construct the density matrix \(\rho _{_{2}}^{(1)\,R}\) for the two site right block. From this obtain the ground state in the basis \(|\mu _{_{N/2-4}}\sigma \sigma '\mu _{_{2}}'\rangle\) and proceed similarly to increase the block size of the right block by one more site and reducing the left block size by one less site.

  7. 7.

    In a full finite iteration, all of the density matrices in the left and right blocks are updated with the new density matrices. This means that first we sweep to the right end, then sweep to the left end, and finally sweep to the right once more, until the block on the left and right are the same size. The ground state energy and wavefunction obtained at this stage corresponds to results at the end of one finite iteration.

  8. 8.

    The entire finite iteration is repeated until desired convergence in the eigenstate are attained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, D., Parvej, A., Das, S. et al. Density matrix renormalization group (DMRG) for interacting spin chains and ladders. J Chem Sci 135, 25 (2023). https://doi.org/10.1007/s12039-023-02140-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02140-x

Keywords

Navigation