Skip to main content
Log in

Understanding pH Tailored Photophysical Properties of a \({\varvec{\pi}}\)-Conjugated Aryl Hydrazone-Derived Dye for Sensing Application

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Time-dependent density functional theory implementing optimally-tuned range-separated hybrid combined with an appropriate solvent model is used to understand the pH-driven changes in the experimentally observed photophysical properties of a novel \(\pi \)-conjugated aryl hydrazone-derivative of dicyanomethylene-dihydro-trimethylfuran-carbonitrile (termed as DCDHF-H) dye in the polar solvent. Calculations reveal similar planar structures for the solvated ground and excited states of the DCDHF-H dye at low solution pH, leading to high fluorescence quantum yield. On the other hand, photoexcitation and subsequent charge-polarization triggered very fast excited-state nuclear relaxation of the deprotonated dye at high solution pH, producing a twisted structure from the planar ground state, which explains the observed fluorescence quenching. Only a small charge transfer is found at the solvated Franck-Condon and relaxed emissive state geometries. Importantly, the large electron-phonon couplings associated with the soft vibrational modes are found to open up nonradiative deactivation channels for the deprotonated form of the dye. Additionally, the presence of a low-lying triplet with remarkably high SOC between the \({S}_{1}\) and \({T}_{2}\) also opens up active nonradiative ISC channel only for the deprotonated dye, supporting the observed fluorescence switching off. These results are useful to understand the reported experimental observations better and provide valuable insights into designing small \(\pi \)-conjugated organic molecules for sensing and imaging applications.

Graphical Abstract

Rationales for the pH-triggered fluorescence switching in an aryl hydrazone-based dye in a polar solvent are provided using reliable quantum-chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Han H-H, Tian H, Zang Y, Sedgwick A C, Li J, Sessler J L, et al. 2021 Small-molecule fluorescence-based probes for interrogating major organ diseases Chem. Soc. Rev. 50 9391

    Article  CAS  PubMed  Google Scholar 

  2. Yin J, Huang L, Wu L, Li J, James T D and Lin W 2021 Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions Chem. Soc. Rev. 50 12098

    Article  CAS  PubMed  Google Scholar 

  3. Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J and James T D 2017 Fluorescent chemosensors: the past, present and future Chem. Soc. Rev. 46 7105

    Article  CAS  PubMed  Google Scholar 

  4. Pham T C, Nguyen V N, Choi Y, Lee S and Yoon J 2021 Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy Chem. Rev. 121 13454

    Article  CAS  PubMed  Google Scholar 

  5. Wu L, Huang C, Emery B P, Sedgwick A C, Bull S D, He X-P, et al. 2020 Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents Chem. Soc. Rev. 49 5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu X and Chang Y-T 2022 Fluorescent probe strategy for live cell distinction Chem. Soc. Rev. 51 1573

    Article  CAS  PubMed  Google Scholar 

  7. Yang M, Fan J, Du J and Peng X 2020 Small-molecule fluorescent probes for imaging gaseous signaling molecules: current progress and future implications Chem. Sci. 11 5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao H, Li P and Tang B 2021 Small Molecular Fluorescent Probes for Imaging of Viscosity in Living Biosystems Chem. Eur. J. 27 6880

    Article  CAS  PubMed  Google Scholar 

  9. Wen Y, Jing N, Huo F and Yin C 2021 Recent progress of organic small molecule-based fluorescent probes for intracellular pH sensing Analyst 146 7450

    Article  CAS  PubMed  Google Scholar 

  10. Ludwanowski S, Samanta A, Loescher S, Barner-Kowollik C and Walther A 2020 A Modular Fluorescent Probe for Viscosity and Polarity Sensing in DNA Hybrid Mesostructures Adv. Sci. 8 2003740

    Article  Google Scholar 

  11. Ahmed R and Manna A K 2021 Origins of Large Stokes Shifts in a Pyrene–Styrene-Based Push-Pull Organic Molecular Dyad in Polar Solvents and Large Electron Mobility in the Crystalline State: A Theoretical Perspective J. Phys. Chem. C 126 423

    Article  Google Scholar 

  12. Sasaki S, Drummen G P C and Konishi G 2016 Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry J. Mater. Chem. C 4 2731

    Article  CAS  Google Scholar 

  13. Doroshenko A O and Pivovarenko V G 2003 Fluorescence quenching of the ketocyanine dyes in polar solvents: anti-TICT behavior J. Photochem. Photobiol. A: Chem. 156 55

    Article  CAS  Google Scholar 

  14. Grabowski Z R, Rotkiewicz K and Rettig W 2003 Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures Chem. Rev. 103 3899

    Article  PubMed  Google Scholar 

  15. Kise K, Hong Y, Fukui N, Shimizu D, Kim D and Osuka A 2018 Diarylamine-Fused Subporphyrins: Proof of Twisted Intramolecular Charge Transfer (TICT) Mechanism Chem. Eur. J. 24 8306

    Article  CAS  PubMed  Google Scholar 

  16. Steinegger A, Wolfbeis O S and Borisov S M 2020 Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications Chem. Rev. 120 12357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Costanzo L and Panunzi B 2021 Visual pH Sensors: From a Chemical Perspective to New Bioengineered Materials Molecules 26 2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang S and Kim S-H 2009 Photophysical and electrochemical properties of D–π–A type solvatofluorchromic isophorone dye for pH molecular switch Curr. Appl. Phys. 9 783

    Article  Google Scholar 

  19. Liu X, Wang N, Lv L and Cai L 2011 Theoretical investigation on proton-induced intramolecular charge transfer of a D-π-A dye for a pH molecular switch Comput. Theor. Chem. 978 29

    Article  CAS  Google Scholar 

  20. Sit H-Y, Deng J-R, Chan W-C, Ko BC-B and Wong M-K 2022 Quinolizinium-based tunable pH fluorescent probes for imaging in live cells Dyes Pigm. 205 110541

    Article  CAS  Google Scholar 

  21. Khattab T A, Tiu B D B, Adas S, Bunge S D and Advincula R C 2016 pH triggered smart organogel from DCDHF-hydrazone molecular switch Dyes Pigm. 130 327

    Article  CAS  Google Scholar 

  22. Chai J and Head-Gordon M 2008 Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections Phys. Chem. Chem. Phys. 10 6615

    Article  CAS  PubMed  Google Scholar 

  23. Scalmani G and Frisch M J 2010 Continuous surface charge polarizable continuum models of solvation. I. General formalism J. Chem. Phys. 132 144110

    Article  Google Scholar 

  24. Stein T, Kronik L and Baer R 2009 Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles J. Chem. Phys. 131 244119

    Article  PubMed  Google Scholar 

  25. Kronik L, Stein T, Refaely-Abramson S and Baer R 2012 Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals J. Chem. Theory Comput. 8 1515

    Article  CAS  PubMed  Google Scholar 

  26. Phillips H, Zheng Z, Geva E and Dunietz B D 2014 Orbital gap predictions for rational designs of organic photovoltaic materials Org. Elec. 15 1509

    Article  CAS  Google Scholar 

  27. Manna A K, Lee M H, McMahon K L and Dunietz B D 2015 Calculating High Energy Charge Transfer States using Optimally Tuned Range-Separated Hybrid Functionals J. Chem. Theory Comput. 11 1110

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed R and Manna A K 2021 Theoretical insights on tunable optoelectronics and charge mobilities in cyano-perylenediimides: interplays between –CN numbers and positions Phys. Chem. Chem. Phys. 23 14687

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed R and Manna A K 2020 Molecular-scale engineering of the charge-transfer excited states in non-covalently bound Zn–porphyrin and carbon fullerene based donor–acceptor complex Phys. Chem. Chem. Phys. 22 14822

    Article  CAS  PubMed  Google Scholar 

  30. Körzdörfer T and Brèdas J-L 2014 Organic Electronic Materials: Recent Advances in the DFT Description of the Ground and Excited States Using Tuned Range-Separated Hybrid Functionals Acc. Chem. Res. 47 3284

    Article  PubMed  Google Scholar 

  31. Janak J 1978 Proof that ∂E/∂ni = εi in density-functional theory Phys. Rev. B 18 7165

    Article  CAS  Google Scholar 

  32. Strickler S and Berg R A 1962 Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules J. Chem. Phys. 37 814

    Article  CAS  Google Scholar 

  33. Sarkar S, Protasiewicz J D and Dunietz B D 2018 Controlling the Emissive Activity in Heterocyclic Systems Bearing C=P Bonds J. Phys. Chem. Lett. 9 3567

    Article  CAS  PubMed  Google Scholar 

  34. Bhandari S, Sarkar S, Schubert A, Yamada A, Payne J, Ptaszek M, et al. 2021 Intersystem Crossing in Tetrapyrrolic Macrocycles A First-Principles Analysis J. Phys. Chem. C 125 13493

    Article  CAS  Google Scholar 

  35. Ahmed R and Manna A K 2022 Understanding High Fluorescence Quantum Yield and Simultaneous Large Stokes Shift in Phenyl Bridged Donor-π-Acceptor Dyads with Varied Bridge Lengths in Polar Solvents J. Phys. Chem. A 126 4221

    Article  CAS  PubMed  Google Scholar 

  36. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, et al. 2016 Gaussian 16, rev. B.01 (Gaussian Inc.: Wallingford, CT)

    Google Scholar 

  37. Shao Y, Gan Z, Epifanovsky E, Gilbert A T B, Wormit M and Kussmann J et al. 2015 Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package Mol. Phys. 113 184

    Article  CAS  Google Scholar 

  38. Reimers J R 2001 A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules J. Chem. Phys. 115 9103

    Article  CAS  Google Scholar 

  39. Sasikumar D, John A T, Sunny J and Hariharan M 2020 Access to the triplet excited states of organic chromophores Chem. Soc. Rev. 49 6122

    Article  CAS  PubMed  Google Scholar 

  40. Ahmed R and Manna A K 2022 Origins of Molecular-Twist-Triggered Intersystem Crossing in Functional Perylenediimides: Singlet-Triplet Gap versus Spin-Orbit Coupling J. Phys. Chem. A 126 6594

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed R and Manna A K 2022 Tailoring intersystem crossing of perylenediimide through chalcogen-substitution at bay-position: A theoretical perspective J. Chem. Phys. 157 214301

    Article  CAS  PubMed  Google Scholar 

  42. Peach M J G, Williamson M J and Tozer D J 2011 Influence of Triplet Instabilities in TDDFT J. Chem. Theory Comput. 7 3578

    Article  CAS  PubMed  Google Scholar 

  43. Gao X, Bai S, Fazzi D, Niehaus T, Barbatti M and Thiel W 2017 Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods J. Chem. Theory Comput. 13 515

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge IIT Tirupati for providing the infrastructure and generous research support. AKM thanks DST-SERB (Grant No.: ECR/2017/001903) and DST-Inspire (Grant No.: DST/Inspire/04/2016/000137), Govt. of India for providing research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K Manna.

Additional information

Dedicated to Professor S. P. Bhattacharyya on the occasion of his 75th birthday.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 622 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, R., Manna, A.K. Understanding pH Tailored Photophysical Properties of a \({\varvec{\pi}}\)-Conjugated Aryl Hydrazone-Derived Dye for Sensing Application. J Chem Sci 135, 9 (2023). https://doi.org/10.1007/s12039-022-02129-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02129-y

Keywords

Navigation