Skip to main content

Advertisement

Log in

Metal-mediated reactions of bromoform with electron-rich and electron-deficient carbon-carbon and carbon-hetero atom multiple bonds

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The addition of bromoform to carbon-carbon and carbon-heteroatom multiple bonds has gathered interest from the synthetic community as it leads to brominated molecules that find applications in agrochemicals, pharmaceuticals, polymers, and radiolabeled agents. The chemistry of di- and tri-brominated functionalized olefins remains scarcely explored. It may be due to their high steric demand and their propensity to form halogen bonds. The addition of bromoform to olefins in the presence of protic bases and a phase-transfer catalyst is well-established. However, their metal-mediated versions leading to new brominated compounds did not receive much attention. The addition of bromoform mediated by metals provides an opportunity to construct various synthetic intermediates and understand the underlying mechanistic aspects. Herein, we present the approaches reported in the last two decades on the bromocyclopropanation, atom transfer radical additions, hydroalkylations, and conjugate additions of bromoform to electron-rich and electron-deficient olefins under metal-mediated conditions. These approaches are expected to set the stage for hitherto unexplored asymmetric transformations and synthesis of complex molecules, including natural products, involving metal-mediated bromoform addition as the key step.

Graphical abstract

Reactions of bromoform with various multiple bonds such as olefins, carbonyl compounds, and imines under metal-mediated conditions are reviewed here. The methodology includes tribromomethylation, dibromomethylenation, dibromocyclopropanation, etc., and is a superior alternative to conventional base-mediated conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39

Similar content being viewed by others

References

  1. Fedoryński M 2003 Syntheses of gem-dihalocyclopropanes and their use in organic synthesis Chem. Rev. 103 1099

    Google Scholar 

  2. Ojima I 2009 Fluorine in medicinal chemistry and chemical biology (Chichester: Wiley-Blackwell)

    Book  Google Scholar 

  3. Purser S, Moore P R, Swallow S and Gouverneur V 2008 Fluorine in medicinal chemistry Chem. Soc. Rev. 37 320

    Article  CAS  Google Scholar 

  4. Tamejiro H 1946 Organofluorine compounds-chemistry and applications (Wien: Springer-Verlag)

    Google Scholar 

  5. Surmont R, Verniest G and De Kimpe N 2010 New synthesis of fluorinated pyrazoles Org. Lett. 12 4648

    CAS  Google Scholar 

  6. Ametamey S M, Honer M and Schubiger P A 2008 Molecular imaging with PET Chem. Rev. 108 1501

    Article  CAS  PubMed  Google Scholar 

  7. Dilman A D, Groult H, Leroux F R and Tressaud A (Eds.) 2017 In modern synthesis processes and reactivity of fluorinated compounds (Elsevier)

    Google Scholar 

  8. Liu X, Xu C, Wang M and Liu Q 2015 Trifluoromethyltrimethylsilane: nucleophilic trifluoromethylation and beyond Chem. Rev. 115 683

    Article  CAS  PubMed  Google Scholar 

  9. Charpentier J, Früh N and Togni A 2015 Electrophilic trifluoromethylation by use of hypervalent iodine reagents Chem. Rev. 115 650

    Article  CAS  PubMed  Google Scholar 

  10. (a) Adekenova K S, Wyatt P B and Adekenov S M 2021 The preparation and properties of 1,1-difluorocyclopropane derivatives Beil. J. Org. Chem. 17 245; (b) Rullière P, Cyr P and Charette A B 2016 Difluorocarbene addition to alkenes and alkynes in continuous flow Org. Lett. 18 1988

  11. Scaffidi A, Skelton B W, Stick R V and White A H 2004 The synthesis of carbohydrate α-amino acids utilizing the Corey-Link reaction Aust. J. Chem. 57 723

    CAS  Google Scholar 

  12. Gupta S and Schafmeister C E 2009 Synthesis of a carboxylate functionalized bis-amino acid monomer J. Org. Chem. 74 3652

    Article  CAS  PubMed  Google Scholar 

  13. Shamshina J L and Snowden T S 2006 Practical approach to α- or γ-heterosubstituted enoic acids Org. Lett. 8 5881

    CAS  Google Scholar 

  14. Ram R N, Gupta D K and Soni V K 2016 Copper(I)/ligand-catalyzed 5-endo radical cyclization-aromatization of 2,2,2-trichloroethyl vinyl ethers: synthesis of 2,3-difunctionalized 4-chlorofurans J. Org. Chem. 81 1665

    Article  CAS  PubMed  Google Scholar 

  15. Morimoto H, Wiedemann S H, Yamaguchi A, Harada S, Chen Z, Matsunaga S and Shibasaki M 2006 Trichloromethyl ketones as synthetically versatile donors: application in direct catalytic Mannich-type reactions and the stereoselective synthesis of azetidines Angew. Chem. Int. Ed. 45 3146

    Article  CAS  Google Scholar 

  16. Liu G and Romo D 2009 Enantioselective synthesis of schulzeines B and C via a β-lactone-derived surrogate for bishomoserine aldehyde Org. Lett. 11 1143

    CAS  Google Scholar 

  17. Ram R N and Manoj T P 2008 Copper(I)-promoted synthesis of chloromethyl ketones from trichloromethyl carbinols J. Org. Chem. 73 5633

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Gupta M K and Snowden T S 2015 One-carbon homologation of primary alcohols and the reductive homologation of aldehydes involving a Jocic-type reaction: homologation of primary alcohols ad aldehydes Eur. J. Org. Chem. 7009

  19. (a) Thankachan A P, Sindhu K S, Krishnan K K and Anilkumar G 2015 Recent advances in the syntheses, transformations and applications of 1,1-dihalocyclopropanes Org. Biomol. Chem. 13 8780; (b) For a recent article: Kumar P, Zainul O and Laughlin S T 2018 Inexpensive multigram-scale synthesis of cyclic enamines and 3-N spirocyclopropyl systems Org. Biomol. Chem. 16 652

  20. (a) For the synthesis of lyconadins A-E, see: Zhang J, Yan Y, Hu R, Li T, Bai W and Yang Y 2020 Enantioselective total syntheses of Lyconadins A–E through a palladium-catalyzed Heck-type reaction Angew. Chem. Int. Ed. 59 2860; (b) For the synthesis of (+)-jatrophalactam, see: Gao J, Sun D, Yu K, Xie H and Ding H 2019 Total synthesis of (+)-jatrophalactam Org. Lett. 21 9603; (c) For the synthesis of erythramine, see: Banwell M G 2008 New processes for the synthesis of biologically relevant heterocycles Pure Appl. Chem. 80 669; (d) For the synthesis of septanosides, see: Ganesh N V and Jayaraman N 2007 Synthesis of septanosides through an oxyglycal route J. Org. Chem. 72 5500

  21. (a) Gribble G W 2012 Recently discovered naturally occurring heterocyclic organohalogen compounds Heterocycles 84 157; (b) Gribble G W 2010 Naturally occurring organohalogen compounds: a comprehensive progress in the chemistry of organic natural products (Springer-Verlag: Wien)

  22. (a) Bringmann G, Brückner R, Mössner R, Feineis D, Heils A and Lesch K P 2000 Effect of 1-trichloromethyl-l,2,3,4-tetrahydro-β-carboline (TaClo) on human serotonergic cells Neurochem. Res. 25 837; (b) Bringmann G, Feineis D, Brückner R, Blank M, Peters K, Peters E M, Reichmann H, Janetzky B, Grote C, Clement H W and Wesemann W 2000 Bromal-derived tetrahydro-β-carbolines as neurotoxic agents: chemistry, impairment of the dopamine metabolism, and inhibitory effects on mitochondrial respiration Bioorg. Med. Chem. 8 1467; (c) Bringmann G, Feineis D, God R, Maksimenka K, Mühlbacher J, Messer K, Münchbach M, Gulden K P, Peters E M and Peters K 2004 Resolution and chiroptical properties of the neurotoxin 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) and related compounds: quantum chemical CD calculations and X-ray diffraction analysis Tetrahedron 60 8143

  23. Sugano M, Sato A, Nagak H, Yoshiok S, Shiraki T and Horikoshi H 1990 Aldose reductase inhibitors from the red alga, ‘Asparagopsis taxiformis’ Tetrahedron Lett. 31 7015

  24. Banwell M G, Gable R W, Peters S C and Phyland J R 1995 Cyclohexannulated [5.3.1]propellanes as precursors to the ABC ring system of paclitaxel (taxol) Chem. Commun. 1395; (b) Mackay M F, Banwell M G and Phyland J R 1997 A benzannulated [5.3.1] propellanone related to the ABC ring system of taxol Acta Cryst. 1497

  25. (a) Kladi M, Vagias C and Roussis V 2004 Volatile halogenated metabolites from marine red algae. Phytochem. Rev. 3 337; (b) Nylund G, Cervin G, Persson F, Hermansson M, Steinberg P and Pavia H 2008 Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga ‘Bonnemaisonia hamifera’ inhibits bacterial colonisation Mar. Ecol. Prog. Ser. 369 39

  26. Wagner C, El Omari M and König G M 2009 Biohalogenation: nature’s way to synthesize halogenated metabolites J. Nat. Prod. 72 540

    Article  CAS  PubMed  Google Scholar 

  27. Gribble G W 1998 Naturally occurring organohalogen compounds Acc. Chem. Res. 31 141

    Article  CAS  Google Scholar 

  28. For recent examples, see: (a) Østby R B, Didriksen T, Antonsen S G, Nicolaisen S S and Stenstrøm Y 2020 Two-phase dibromocyclopropanation of unsaturated alcohols using flow chemistry Molecules 25 2364; (b) Shang W, Terranova M, Sydnes L K and Bjørsvik H R 2014 Multivariate optimization of a cyclopropanation, the key step in the synthesis of 3,3,4,4-tetraethoxybut-1-yne Org. Process Res. Dev. 18 891; (c) Averina E B, Sedenkova K N, Bakhtin S G, Grishin Y K, Kutateladze A G, Roznyatovsky V A, Rybakov V B, Butov G M, Kuznetsova T S and Zefirov N S 2014 symm-Tetramethylenecyclooctane: En route to polyspirocycles J. Org. Chem. 79 8163; (d) Mustafa H H, Baird M S, Al Dulayymi J R and Tverezovskiy V V 2013 Diastereomeric cyclic tris-allenes Chem. Commun. 49 2497; (e) Aouf C and Santelli M 2011 Dibromocarbene and bromofluorocarbene addition to substituted allylsilanes Tetrahedron Lett. 52 688; (f) Su K J, Mieusset J L, Arion V B, Knoll W, Brecker L and Brinker U H 2010 Efforts toward distorted spiropentanes J. Org. Chem. 75 7494; (g) Averina E B, Karimov R R, Sedenkova K N, Grishin Y K, Kuznetzova T S and Zefirov N S 2006 Carbenoid rearrangement of gem-dihalogenospiropentanes Tetrahedron 62 8814; (h) Kumar P, Zainul O and Laughlin S T 2018 Inexpensive multigram-scale synthesis of cyclic enamines and 3-N spirocyclopropyl systems Org. Biomol. Chem. 16 652; (i) Ueda K, Umihara H, Yokoshima S and Fukuyama T 2015 Conversion of ester moieties to 4-bromophenyl groups via electrocyclic reaction of dibromocyclopropanes Org. Lett. 17 3191

  29. (a) Sharp P P, Mikusek J, Ho J, Krenske E H, Banwell M G, Coote M L, Ward J S and Willis A C 2018 Mechanistic studies on the base-promoted conversion of alkoxy-substituted, ring-fused gem-dihalocyclopropanes into furans: evidence for a process involving electrocyclic ring closure of a carbonyl ylide intermediate J. Org. Chem. 83 13678; (b) Halton B and Harvey J 2006 Electrocyclic ring-opening reactions of gem-dibromocyclopropanes in the synthesis of natural products and related compounds Synlett 1975; (c) Kopp F, Sklute G, Polborn K, Marek I and Knochel P 2005 Stereoselective functionalization of cyclopropane derivatives using bromine/magnesium and sulfoxide/magnesium exchange reactions Org. Lett. 7 3789

  30. For making zinc-based scorpionate ligand, See: Tüchler M, Holler S, Huber E, Fischer S, Boese A D, Belaj F and Mösch-Zanetti N C 2017 Synthesis and characterization of a thiopyridazinylmethane-based scorpionate ligand: formation of zinc complexes and rearrangement reaction Organometallics 36 3790

  31. Zhang X, Sarkar S K, Weragoda G K, Rajam S, Ault B S and Gudmundsdottir A D 2014 Comparison of the photochemistry of 3-methyl-2-phenyl-2-H-azirine and 2-methyl-3-phenyl-2-H-azirine J. Org. Chem. 79 653

    Article  CAS  PubMed  Google Scholar 

  32. (a) Zwettler N, Dupé A, Klokić S, Milinković A, Rodić D, Walg S, Neshchadin D, Belaj F and Mösch-Zanetti N C 2020 Hydroalkylation of aryl alkenes with organohalides catalyzed by molybdenum oxido based Lewis pairs Adv. Synth. Catal. 362 3170; (b) Cristina S C D, 2020 Additions to non-activated alkenes: Recent advances Arab. J. Chem. 13 799

  33. Su Y-L, Tram L, Wherritt D, Arman H, Griffith W P and Doyle M P 2020 α-Amino radical-mediated diverse difunctionalization of alkenes: construction of C-C C-N, and C-S bonds ACS Catal. 10 13682

    Article  CAS  Google Scholar 

  34. (a) Sawama Y, Nakatani R, Imanishi T, Fujiwara Y, Monguchi Y and Sajiki H 2014 Effect of sodium acetate in atom transfer radical addition of polyhaloalkanes to olefins RSC Adv. 4 8657; (b) Kumar S, Shah T A, Punniyamurthy T 2021 Recent advances in the application of tetrabromomethane in organic synthesis Org. Chem. Front. 8 4288

  35. (a) Paquette L A 2009 Encyclopedia of reagents for organic synthesis (2nd ed.) (Chichester: J. Wiley and sons); (b) Miyano S, Matsumoto Y and Hashimoto H 1975 Synthesis of monobromocyclopropanes from olefins using a bromocarbenoid of zinc J. Chem. Soc., Chem. Commun. 364

  36. Janßen C E and Krause N 2005 Studies on the synthesis of macrocyclic allenes by ring closing metathesis and Doering-Moore-Skattebøl reaction Eur. J. Org. Chem. 2322

  37. Ikeda H, Nishi K, Tsurugi H and Mashima K 2020 Chromium-catalyzed cyclopropanation of alkenes with bromoform in the presence of 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-dihydropyrazine Chem. Sci. 11 3604

    CAS  Google Scholar 

  38. Keglevich A, Mayer S, Pápai R, Szigetvári Á, Sánta Z, Dékány M, Szántay C, Keglevich P and Hazai L 2018 Attempted synthesis of vinca alkaloids condensed with three-membered rings Molecules 23 2574

    Article  PubMed Central  CAS  Google Scholar 

  39. Meng X, Zhang Y, Luo J, Wang F, Cao X and Huang S 2020 Electrochemical oxidative oxydihalogenation of alkynes for the synthesis of α, α-dihaloketones Org. Lett. 22 1169

    CAS  Google Scholar 

  40. Xue J and Parker V D 1994 Aryl proton transfer reactions of 9-arylanthracene and 9-substituted anthracene radical cations with 2,6-di-tert-butylpyridine J. Org. Chem. 59 6564

    Article  CAS  Google Scholar 

  41. Eckenhoff W T, Garrity S T and Pintauer T 2008 Highly efficient copper‐mediated atom-transfer radical addition (ATRA) in the presence of reducing agent Eur. J. Inorg. Chem. 563

  42. Pintauer T, Eckenhoff W T, Ricardo C, Balili M N C, Biernesser A B, Noonan S J and Taylor M J W 2009 Highly efficient ambient-temperature copper-catalyzed atom-transfer radical addition (ATRA) in the presence of free-radical initiator (V-70) as a reducing agent Chem. Eur. J. 15 38

    Article  CAS  Google Scholar 

  43. Sahu B, Gururaja G N, Mobin S M and Namboothiri I N N 2009 Facile synthesis of β-tribromomethyl and dibromomethylenated nitroalkanes via conjugate addition of bromoform to nitroalkenes J. Org. Chem. 74 2601

    Article  CAS  PubMed  Google Scholar 

  44. (a) Gururaja G N, Mobin S M and Namboothiri I N N 2011 Formation of five-membered cyclic orthoesters from tribromides with participation of a neighboring carbonyl group Eur. J. Org. Chem. 2048; (b) For an alternative mechanism via dibromocyclopropanation of the chalcone double bond and ring expansion: Banwell M G 1983 gem-Dichlorocyclopropanes as masked esters: A novel synthesis of p-methoxycarbonyl aldehydes and ketones J. Chem. Soc., Chem. Commun. 1453

  45. Gopi E and Namboothiri I N N 2013 Synthesis of fused bromofurans via Mg-mediated dibromocyclopropanation of cycloalkanone-derived chalcones and Cloke-Wilson rearrangement J. Org. Chem. 78 910

    Article  CAS  PubMed  Google Scholar 

  46. Liu B, Li X, Zhang J, Du L and Zeng R 2013 Synthesis of novel spiro[cyclopropane-indolizine] derivatives via magnesium-mediated conjugate addition of bromoform J. Chem. Res. 37 681

    Article  CAS  Google Scholar 

  47. Liu B, Li X F, Zhang J, Wang M T and Zeng R J 2015 Synthesis of novel spiro[cyclopropane-pyrrolizine] derivatives via Mg-mediated conjugate addition of bromoform J. Res. Chem. Intermed. 41 2345

    Article  CAS  Google Scholar 

  48. Yan J, Deng Z and Kuang G 2014 Synthesis of novel spiro[cyclopropane-indazole] derivatives via magnesium-mediated conjugate addition of bromoform J. Chem. Res. 38 558

    Article  CAS  Google Scholar 

  49. Satam N, Nemu S, Gururaja G N and Namboothiri I N N 2020 Substrate-oriented selectivity in the Mg-mediated conjugate addition of bromoform to electron-deficient alkenes Org. Biomol. Chem. 18 5697

    Article  CAS  Google Scholar 

  50. Shastin A V, Nenajdenko V G, Korotchenko V N and Balenkova E S 2001 New method for the synthesis of β-bromostyrenes Russ. Chem. Bull. 50 1401

    Article  CAS  Google Scholar 

  51. On H P, Lewis W and Zweifel G 1981 Stereoselective syntheses of (E)- and (Z)-1-halo-1-alkenes from 1-alkynylsilanes Synthesis 999

  52. Brown H C, Subrahmanyam C, Hamaoka T, Ravindran N, Bowman D H, Misumi S, Unni M K, Somayaji V and Bhat N G 1989 Vinylic organoboranes: A convenient stereospecific synthesis of (Z)-1-halo-1-alkenes from 1-alkynes via (E)-1-alkenylborane derivatives with halogens J. Org. Chem. 54 6068

    Article  CAS  Google Scholar 

  53. Abbas S, Hayes C J and Worden S 2000 The ‘Hirao reduction’ revisited: A procedure for the synthesis of terminal vinyl bromides by the reduction of 1,1-dibromoalkenes Tetrahedron Lett. 41 3215

  54. Kim H Y, Salvi L, Carroll P J and Walsh P J 2009 Highly enantio- and diastereoselective one-pot methods for the synthesis of halocyclopropyl alcohols J. Am. Chem. Soc. 131 954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gopi E and Namboothiri I N N 2014 Synthesis of α-tribromomethylamines via Mg-mediated addition of bromoform to imines Org. Biomol. Chem. 12 2769

    Article  CAS  Google Scholar 

  56. Dötz K H and Mittenzwey S 2002 Chromium-templated synthesis of densely substituted distorted arenes-intramolecular benzannulation of [(alkynylaryl)alkenyl]carbene complexes to planar-chiral hydroquinoid [2.2]heterametacyclophanes Eur. J. Org. Chem. 39

  57. Pauvert M, Dupont V and Guingant A 2002 A facile access to the 1,5-dihydro- and 1,3,4,5-tetrahydro-benzo[b]azepin-2-one ring systems via a new ring enlargement Synlett 1350

  58. Concellón J M, Bernad P L and Méjica C 2005 Synthesis of enantiopure (S)-(E)-1-haloalk-1-ene-3-amines with total or very high diastereoselectivity by halomethylenation of α-amino aldehydes promoted by CrCl2 Tetrahedron Lett. 46 569

  59. Terent’ev A B, Vasil’eva T T, Chakhovskaya O V, Mysova N E and Kochetkov K A 2005 Addition of halocarboxylic acids esters and halohydrocarbons to pentafluorobenzaldehyde promoted by iron pentacarbonyl Russ. J. Org. Chem. 41 1615

    Google Scholar 

  60. White J D, Kuntiyong P and Lee T H 2006 Total synthesis of phorboxazole A. preparation of four subunits Org. Lett. 8 6039

  61. Lim D S W and Anderson E A 2011 One-step preparation of functionalized (E)-vinylsilanes from aldehydes Org. Lett. 13 4806

    CAS  Google Scholar 

  62. (a) Bhorge Y R, Chang C T, Chang S H and Yan T H 2012 CHBr3/TiCl4/Mg as an unusual nucleophilic CBr2 carbenoid: effective and chemoselective dibromomethylenation of aldehydes and ketones Eur. J. Org. Chem. 4805; (b) Bhorge Y R, Chang S H, Chang C T and Yan T H 2012 A new entry of highly nucleophilic CHBr3–TiCl4–Mg system for the stereoselective synthesis of 1-alkenyl bromides Tetrahedron 68 4846

  63. Li Y, Palframan M J, Pattenden G and Winne J M 2014 A strategy towards the synthesis of plumarellide based on biosynthesis speculation, featuring a transannular [4+2] type cyclisation from a cembranoid furanoxonium ion intermediate Tetrahedron 70 7229

  64. Sizov A I, Zvukova T M and Bulychev B M 2012 Mechanochemical synthesis of poly(hydridocarbyne) Russ. Chem. Bull. 61 668

    Article  CAS  Google Scholar 

  65. Couch G D, Burke P J, Knox R J and Moody C J 2008 Synthesis of 2-aryl-6-methyl-5-nitroquinoline derivatives as potential prodrug systems for reductive activation Tetrahedron 64 2816

  66. Ellis D 2011 Versatile synthesis of fused tricyclic 1,2,4-triazole derivatives Synth. Commun. 41 963

    CAS  Google Scholar 

  67. Levy O and Bino A 2012 Metal ions do not play a direct role in the formation of carbon-carbon triple bonds during reduction of trihaloalkyls by Cr(II) or V(II) Chem. Eur. J. 18 15944

    Article  CAS  Google Scholar 

  68. Bejot R, He A, Falck J R and Mioskowski C 2007 Chromium-carbyne complexes: Intermediates for organic synthesis Angew. Chem. Int. Ed. 46 1719

    Article  CAS  Google Scholar 

  69. Lee J Y, Fan W Y, Mak K H G and Leong W K 2013 The formation of aldehydes from the photochemically activated reaction of Cp*Ir(CO)(Cl)(CH2R) complexes with water J. Organomet. Chem. 724 275

    Article  CAS  Google Scholar 

  70. Pünner F and Hilt G 2014 Zinc-mediated CH-activation of tetrahydrofuran under mild conditions for the regioselective addition to aryl-propiolates Chem. Commun. 50 7310

    Google Scholar 

  71. Martínez A R, Morales L P, Ojeda E D, Rodríguez M C and Rodríguez-García I 2021 The proven versatility of Cp2TiCl J. Org. Chem. 86 1311

    Article  PubMed  CAS  Google Scholar 

  72. Zhang F, Arnatt C K, Haney K M, Fang H C, Bajacan J E, Richardson A C, Ware J L and Zhang Y 2012 Structure activity relationship studies of natural product chemokine receptor CCR5 antagonist anibamine toward the development of novel anti-prostate cancer agents Eur. J. Med. Chem. 55 395

    Article  CAS  Google Scholar 

  73. Halama A, Stach J, Rádl S and Benediktová K 2018 Identification of an unexpected impurity in a new improved synthesis of lesinurad Org. Process Res. Dev. 22 1861

    Article  CAS  Google Scholar 

  74. Xia Z, Correa R G, Das J K, Farhana L, Castro D J, Yu J, Oshima R G, Fontana J A, Reed J C and Dawson M I 2012 Analogues of orphan nuclear receptor small heterodimer partner ligand and apoptosis inducer (E)-4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid. Impact of 3-chloro group replacement on inhibition of proliferation and induction of apoptosis of leukemia and cancer cell lines J. Med. Chem. 55 233

  75. Zhang F, Zaidi S, Haney K M, Kellogg G E and Zhang Y 2011 Regio- and stereoselective syntheses of the natural product CCR5 antagonist anibamine and its three olefin isomers J. Org. Chem. 76 7945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

INNN thanks SERB India for funding, and DK thanks CSIR India for a research fellowship. The authors thank Dr. Edmond Gravel, Alternative Energies and Atomic Energy Commission of France (CEA), Saclay, for his critical comments on this manuscript.

Funding

Funding was provided by Science and Engineering Research Board (Grant no. CRG/2020/002660).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madhu Ganesh or Irishi N N Namboothiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Ganesh, M. & Namboothiri, I.N.N. Metal-mediated reactions of bromoform with electron-rich and electron-deficient carbon-carbon and carbon-hetero atom multiple bonds. J Chem Sci 134, 83 (2022). https://doi.org/10.1007/s12039-022-02075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02075-9

Keywords

Navigation