Skip to main content
Log in

Facile induction and stabilization of intramolecular antiparallel G-quadruplex of d(TTAGGG)n on interaction with triazine-2-imidazole ethyl amine compound and its Cu(II), Zn(II) complexes under no-salt conditions

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The compounds trizImEA, Cu-trizImEA and Zn-trizImEA were synthesized and characterized by CHN, IR, NMR and mass measurements. They were interacted with CT DNA, and human telomere DNA, HTelo8 and HTelo20 to elucidate their binding capacity with different DNA structures. The interactions were followed by circular dichrosim (CD) measurements, fluorescent intercalator displacement (FID) assays and molecular docking studies through MOE program. The CD studies reveal the G-quadruplex stabilization of both HTelo8 and HTelo20 under salt conditions by the pure ligand, Cu-trizImEA and Zn-trizImEA. The compounds also induce and stabilize, selectively antiparallel G-quadruplex conformation on d(TTAGGG)n under no salt conditions. The binding constant (Kb) values calculated for the ligand and complexes are in the range of 5.3 × 104 M−1 to 9.4 × 105 M−1 revealing the strong binding. The FID assays clearly indicate the strong binding of the compounds on the G-quadruplex structure, as they displace thiazole orange (TO) which was bound to G-quadruplex already through specific intercalation. Molecular docking studies revealed classical intercalation as the preferred mode of interaction for all the three compounds in case of the stabilization towards antiparallel conformation. The compound's ability on antitelomerase activity and anticancer activities were performed and was found to be very effective in various cancer cell lines. The IC50 values observed were in the range of 50–100 nM for anticancer activity. Thus the compounds can be considered as effective anticancer agents as they stabilize G-quadruplex structures in a more facile and effective way towards antitelomerase action.

Graphical abstract

The pure ligand, Cu-trizImEA and Zn-trizImEA compounds were induce and stabilize, selectively antiparallel G-quadruplex conformation on d(TTAGGG)n under no salt conditions. The formed G-quadruplexes were thermodynamically stable and irreversible, thus resulting in proficient antitelomerase and anticancer activity, in-vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Shay J W and Wright W E 2019 Telomeres and telomerase: three decades of progress Nat. Rev. Genet. 20 299

    Article  CAS  PubMed  Google Scholar 

  2. Oganesian L and Bryan T M 2007 Physiological relevance of telomeric G-quadruplex formation: A potential drug target BioEssays 29 155

    Article  CAS  PubMed  Google Scholar 

  3. Hänsel-Hertsch R, Di Antonio M and Balasubramanian S 2017 DNA G-quadruplexes in the human genome: Detection, functions and therapeutic potential Nat. Rev. Mol. Cell Biol. 18 279

    Article  PubMed  Google Scholar 

  4. Müller S and Rodriguez R 2014 G-quadruplex interacting small molecules and drugs: From bench toward bedside Expert Rev. Clin. Pharmacol. 7 663

    Article  PubMed  Google Scholar 

  5. O’Hagan M P, Morales J C and Galan M C 2019 Binding and Beyond: What Else Can G-Quadruplex Ligands Do? Eur. J. Org. Chem. 2019 4995

    Article  Google Scholar 

  6. Neidle S and Parkinson G 2002 Telomere maintenance as a target for anticancer drug discovery Nat. Rev. Drug Discov. 1 383

    Article  CAS  PubMed  Google Scholar 

  7. Dai J, Carver M, Punchihewa C, Jones R A and Yang D 2007 Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: Insights into structure polymorphism of the human telomeric sequence Nucleic Acids Res. 35 4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alessandrini I, Recagni M, Zaffaroni N and Folini M 2021 On the road to fight cancer: The potential of g-quadruplex ligands as novel therapeutic agents Int. J. Mol. Sci. 22 1

    Article  Google Scholar 

  9. Awadasseid A and Ma X 2021 Wu Y and Zhang W 2021 G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy Biomed. Pharmacother. 139 111550

    Article  CAS  PubMed  Google Scholar 

  10. Cao Q et al. 2017 G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs Inorg. Chem. Front. 4 10

    Article  CAS  Google Scholar 

  11. Asamitsu S, Obata S, Yu Z, Bando T and Sugiyama H 2019 Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy Molecules 24 429

    Article  PubMed Central  Google Scholar 

  12. Mitrasinovic P M 2020 G-quadruplexes: Emerging targets for the structure-based design of potential anti-cancer and antiviral therapies Acta Chim. Slov. 67 683

    Article  CAS  PubMed  Google Scholar 

  13. Kosiol N, Juranek S, Brossart P, Heine A and Paeschke K 2021 G-quadruplexes: a promising target for cancer therapy Mol. Cancer 20 1

    Article  Google Scholar 

  14. Ruden M and Puri N 2013 Novel anticancer therapeutics targeting telomerase Cancer Treat. Rev. 39 444

    Article  CAS  PubMed  Google Scholar 

  15. Terenzi A et al. 2014 Selective G-quadruplex stabilizers: Schiff-base metal complexes with anticancer activity RSC Adv. 4 33245

    Article  CAS  Google Scholar 

  16. Reed J E, Arnal A A, Neidle S and Vilar R 2006 Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(II) complexes J. Am. Chem. Soc. 128 5992

    Article  CAS  PubMed  Google Scholar 

  17. Müller S, Kumari S, Rodriguez R and Balasubramanian S 2010 Small-molecule-mediated G-quadruplex isolation from human cells Nat. Chem. 2 1095

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim M, Vankayalapati H, Shin-ya K, Wierzba K and Hurley L H 2002 Telomestatin, a Potent Telomerase Inhibitor That Interacts Quite Specifically with the Human Telomeric Intramolecular G-Quadruplex JACS Commun. 124 2098

    Article  CAS  Google Scholar 

  19. Zhang W J et al. 2007 9-Substituted berberine derivatives as G-quadruplex stabilizing ligands in telomeric DNA Bioorg. Med. Chem. 15 5493

    Article  CAS  PubMed  Google Scholar 

  20. Lavrado J, Reszka A P, Moreira R, Neidle S and Paulo A 2010 C-11 diamino cryptolepine derivatives NSC748392, NSC748393, and NSC748394: Anticancer profile and G-quadruplex stabilization Bioorg. Med. Chem. Lett. 20 7042

    Article  CAS  PubMed  Google Scholar 

  21. Hudson J S, Brooks S C and Graves D E 2009 Interactions of actinomycin D with human telomeric G-quadruplex DNA Biochemistry 48 4440

    Article  CAS  PubMed  Google Scholar 

  22. Majumder P and Dasgupta D 2011 Effect of DNA groove binder distamycin a upon chromatin structure PLoS ONE 6 e26486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miglietta G, Russo M, Duardo R C and Capranico G 2021 G-quadruplex binders as cytostatic modulators of innate immune genes in cancer cells Nucleic Acids Res. 49 6673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Percivalle C et al. 2014 Aryl ethynyl anthraquinones: A useful platform for targeting telomeric G-quadruplex structures Org. Biomol. Chem. 12 3744

    Article  CAS  PubMed  Google Scholar 

  25. Martins C et al. 2007 Structure-based design of benzylamino-acridine compounds as G-quadruplex DNA telomere targeting agents Bioorg. Med. Chem. Lett. 17 2293

    Article  CAS  PubMed  Google Scholar 

  26. Haq I, Trent J O, Chowdhry B Z and Jenkins T C 1999 Intercalative G-Tetraplex Stabilization of Telomeric DNA by a Cationic Porphyrin J. Am. Chem. Soc. 9 1768

    Article  Google Scholar 

  27. Le Vy Thi T, Han S, Chae J and Park H-J 2012 G-Quadruplex Binding Ligands: from Naturally Occurring to Rationally Designed Molecules Curr. Pharm. Des. 18 1948

    Article  Google Scholar 

  28. Abd Karim N H et al. 2014 Salphen metal complexes as tunable G-quadruplex binders and optical probes RSC Adv. 4 3355

    Article  CAS  Google Scholar 

  29. Gama S et al. 2016 Anthracene-terpyridine metal complexes as new G-quadruplex DNA binders J. Inorg. Biochem. 160 275

    Article  CAS  PubMed  Google Scholar 

  30. Reed J E, Neidle S and Vilar R 2007 Stabilisation of human telomeric quadruplex DNA and inhibition of telomerase by a platinum-phenanthroline complex Chem. Commun. 42 4366

    Article  Google Scholar 

  31. Ali A, Kamra M, Roy S, Muniyappa K and Bhattacharya S 2016 Novel Oligopyrrole Carboxamide based Nickel(II) and Palladium(II) Salens, Their Targeting of Human G-Quadruplex DNA, and Selective Cancer Cell Toxicity Chem. Asian J. 11 2542

    Article  CAS  PubMed  Google Scholar 

  32. Dik-Lung M, Che C M and Yan S C 2009 Platinum(II) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA J. Am. Chem. Soc. 131 1835

    Article  Google Scholar 

  33. Tuntiwechapikul W and Salazar M 2001 Cleavage of telomeric G-quadruplex DNA with perylene-EDTA·Fe(II) Biochemistry 40 13652

    Article  CAS  PubMed  Google Scholar 

  34. Randazzo A, Spada G P and da S M W 2012 Circular Dichroism of Quadruplex Structures Top. Curr. Chem. 310 1

    Google Scholar 

  35. Bhat H R, Masih A, Shakya A, Ghosh S K and Singh U P 2020 Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4-aminoquinoline-1,3,5-triazine derivatives J. Heterocycl. Chem. 57 390

    Article  CAS  Google Scholar 

  36. Shelke M E 2021 Design, Synthesis, and Antimicrobial Evaluation of Novel 1,3,5-Triazine Derivatives Am. J. Pharmacol. 4 6

    Google Scholar 

  37. Yadav N and Jain P D A 2020 Biological Evaluation Of Synthesized Trsubstituted 1, 3, 5 Triazine Derivatives For Anti Bacterial Activity Int. J. Adv. Sci. Technol. 29 10477

    Google Scholar 

  38. Cascioferro S et al. 2017 1,3,5-Triazines: A promising scaffold for anticancer drugs development Eur. J. Med. Chem. 142 523

    Article  CAS  PubMed  Google Scholar 

  39. Mahdi M A, Jasim L S and Mohamed M H 2020 Synthesis and anticancer activity evaluation of novel ligand 2- [2 - (5-Chloro carboxy phenyl) Azo] 1-Methyl Imidazole (1-Mecpai) with Some Metal Complexes Syst. Rev. Pharm. 11 1979

    CAS  Google Scholar 

  40. De Hoog P, Gamez P, Driessen W L and Reedijk J 2002 New polydentate and polynucleating N-donor ligands from amines and 2,4,6-trichloro-1,3,5-triazine Tetrahedron Lett. 43 6783

    Article  Google Scholar 

  41. Maheswari P U et al. 2006 Crystallographic evidence of nitrate-π interactions involving the electron-deficient 1,3,5-triazine ring Inorg. Chem. 45 6637

    Article  CAS  PubMed  Google Scholar 

  42. Wolfe A, Shimer G H and Meehan T 1987 Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA? Biochemistry 26 6392

    Article  CAS  PubMed  Google Scholar 

  43. Adams D M and Lock P J 1967 Copper-Halogen Stretching Frequencies J. Chem. Soc. 620

  44. Balasubramanian S, Hurley L H and Neidle S 2011 Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 10 261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhattacharjee A J et al. 2011 Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N- methyl-4-pyridyl)porphyrin Biochimie 93 1297

    Article  CAS  PubMed  Google Scholar 

  46. Sun L et al. 2014 Unfolding and conformational variations of thrombin-binding DNA aptamers: Synthesis, circular dichroism and molecular dynamics simulations ChemMedChem 9 993

    Article  CAS  PubMed  Google Scholar 

  47. Siters K E, Fountain M A and Morrow J R 2014 Selective Binding of Zn2+ Complexes to Human Telomeric G-Quadruplex DNA Inorg. Chem. 53 11540

    Article  CAS  PubMed  Google Scholar 

  48. Bonsignore R et al. 2016 G-quadruplex vs. duplex-DNA binding of nickel(II) and zinc(II) Schiff base complexes J. Inorg. Biochem. 161 115

    Article  CAS  PubMed  Google Scholar 

  49. Bonsignore R et al. 2018 The interaction of Schiff Base complexes of nickel(II) and zinc(II) with duplex and G-quadruplex DNA J. Inorg. Biochem. 178 106

    Article  CAS  PubMed  Google Scholar 

  50. Fu B et al. 2008 Cationic metal-corrole complexes: Design, synthesis, and properties of guanine-quadruplex stabilizers Chem. A Eur. J. 14 9431

    Article  CAS  Google Scholar 

  51. Xu L et al. 2010 Trinuclear Ru(II) polypyridyl complexes as human telomeric quadruplex DNA stabilizers Inorg. Chem. Commun. 13 1050

    Article  CAS  Google Scholar 

  52. Roshatiara S, Sahudin M A, Hassan N H and Karim N H A 2017 Interaction of n, n’-bis[4-[1-(2-hydroxyethoxy)] salicylidene]-phenyldiamine- nickel(II) and copper(II) complexes with G-quadruplex DNA Malays J. Anal. Sci. 21 544

    Google Scholar 

  53. Monchaud D, Allain C and Teulade-Fichou M P 2006 Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands Bioorg. Med. Chem. Lett. 16 4842

    Article  CAS  PubMed  Google Scholar 

  54. Largy E, Hamon F and Teulade-Fichou M P 2011 Development of a high-throughput G4-FID assay for screening and evaluation of small molecules binding quadruplex nucleic acid structures Anal. Bioanal. Chem. 400 3419

    Article  CAS  PubMed  Google Scholar 

  55. Lubitz I, Zikich D and Kotlyar A 2010 Specific high-affinity binding of thiazole orange to triplex and g-quadruplex DNA Biochemistry 49 3567

    Article  CAS  PubMed  Google Scholar 

  56. Parkinson G N, Lee M P H and Neidle S 2002 Crystal structure of parallel quadruplexes from human telomeric DNA Nature 417 876

    Article  CAS  PubMed  Google Scholar 

  57. Wilson T, Costa P J, Félix V, Williamson M P and Thomas J A 2013 Structural studies on dinuclear ruthenium(II) complexes that bind diastereoselectively to an antiparallel folded human telomere sequence J. Med. Chem. 56 8674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin C et al. 2018 Molecular Recognition of the Hybrid-2 Human Telomeric G-Quadruplex by Epiberberine: Insights into Conversion of Telomeric G-Quadruplex Structures Angew. Chem. Int. Ed. 57 10888

    Article  CAS  Google Scholar 

  59. Mender I and Shay J W 2016 Telomerase Repeat Amplification Protocol (TRAP) Bio-Protocol 5 e1657

    Google Scholar 

  60. Shin-ya K et al. 2001 Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus [17] J. Am. Chem. Soc. 123 1262

    Article  CAS  PubMed  Google Scholar 

  61. Maheswari P U et al. 2006 The square-planar cytotoxic [CuII(pyrimol)Cl] complex acts as an efficient DNA cleaver without reductant J. Am. Chem. Soc. 128 710

    Article  CAS  PubMed  Google Scholar 

  62. Li L et al. 2019 Design, synthesis, and biological evaluation of 1-substituted -2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents Eur. J. Med. Chem. 184 111732

    Article  CAS  PubMed  Google Scholar 

  63. Bin Sayeed I, Vishnuvardhan M V P S, Nagarajan A, Kantevari S and Kamal A 2018 Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line Bioorg. Chem. 80 714

    Article  Google Scholar 

  64. Narasimha Rao M P et al. 2018 Synthesis of imidazo-thiadiazole linked indolinone conjugates and evaluated their microtubule network disrupting and apoptosis inducing ability Bioorg. Chem. 76 420

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Prof. Raghavan, MBU, IISc., Bangalore is thanked for CD facility. DST-WOS-A (SR/WOS-A/CS-75/2016), India is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Maheswari Palanisamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 841 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraisamy, R., Palanisamy, U., Sheriffa Begum, K.M.M. et al. Facile induction and stabilization of intramolecular antiparallel G-quadruplex of d(TTAGGG)n on interaction with triazine-2-imidazole ethyl amine compound and its Cu(II), Zn(II) complexes under no-salt conditions. J Chem Sci 134, 12 (2022). https://doi.org/10.1007/s12039-021-01996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01996-1

Keywords

Navigation