Skip to main content
Log in

Role of supramolecular interactions in crystal packing of Strandberg-type cluster-based hybrid solids

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two new Strandberg-type cluster-based phosphomolybdates {H-2a3mp}5[{PO3(OH)}{PO4}Mo5O15], 1 and {H-2a4mp}5[{PO3(OH)}{PO4}Mo5O15]·6H2O, 2 have been crystallized via solvent evaporation technique using 2-amino-3-methylpyridine (2a3mp) and 2-amino-4-methylpyridine (2a4mp) respectively. The solids were characterized using single-crystal X-ray diffraction, powder X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and cyclic voltammetry. The solid 1 crystallized in monoclinic system with space group P21/c, a = 8.394(1), b = 27.398(6), c = 21.521(4) Å, β = 97.68(3)°, Z = 4. The solid 2 crystallized in triclinic system with space group P-1, a = 11.728(1), b = 14.234(1), c = 19.589(1) Å, α = 68.906(3), β = 89.454(3), γ = 66.559(3)°, Z = 2. The solids 1 and 2 formed a supramolecular framework stabilized by hydrogen bonding interaction between cluster anions and organic moieties. CH…π interactions between the organic moieties reinforced the crystal packing in 1 and 2. While crystal packing effects resulted in the formation of solvent-accessible voids in 1; aggregation of lattice water molecules in 2 facilitated the formation of pentameric water cluster. In addition, electrochemical behavior of 1 and 2 has also been investigated.

Graphic abstract

Two new Strandberg-type cluster based phosphomolybdates, 1 and 2 have been crystallized via solvent evaporation technique using 2-amino-3-methylpyridine and 2-amino-4-methylpyridine. Detailed structural analysis revealed the role of supramolecular interactions in the crystal packing of these solids. In addition, electrochemical behavior of 1 and 2 has also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Upreti S and Ramanan A 2006 Role of hydrogen-bonded interactions in the crystal packing of phenylenediammonium phosphomolybdates Cryst. Growth Des. 6 2066

    Article  CAS  Google Scholar 

  2. Shi S, Chen L, Zhao X, Ren B, Cui X and Zhang J 2018 Role of H-bonds in the crystal packing of three novel Strandberg-type polyoxoanion compounds Inorg. Chim. Acta 482 870

    Article  CAS  Google Scholar 

  3. Pathan S and Patel A 2014 Keggin type transition metal substituted phosphomolybdates: Heterogeneous catalysts for selective aerobic oxidation of alcohols and alkenes under solvent free condition Catal. Sci. Technol. 4 648

    Article  CAS  Google Scholar 

  4. Li C, Mizuno N, Yamaguchi K and Suzuki K 2019 Self-assembly of anionic polyoxometalate–organic architectures based on lacunary phosphomolybdates and pyridyl ligands J. Am. Chem. Soc. 141 7687

    Article  CAS  Google Scholar 

  5. Xun S, Guo T, He M, Ma R, Zhang M, Zhu W and Li H 2019 Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel J. Colloid Interface Sci. 534 239

    Article  CAS  Google Scholar 

  6. Joseph J, Radhakrishnan R C, Johnson J K, Joy S P and Thomas J 2020 Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate Mater. Chem. Phys. 242 122488

    Article  CAS  Google Scholar 

  7. Abu-Zied B M, Farrag A A A and Asiri A M 2013 Preparation of caesium-substituted phosphomolybdic acid via solid-state ion exchange method Powder Technol. 246 643

    Article  CAS  Google Scholar 

  8. Lu L and Xie Y 2018 Phosphomolybdic acid cluster bridging carbon dots and polyaniline nanofibers J. Mater. Sci. 54 4842

    Article  Google Scholar 

  9. Manivel A and Anandan S 2011 Silver nanoparticles embedded phosphomolybdate–polyaniline hybrid electrode for electrocatalytic reduction of H2O2 J. Solid State Electrochem. 15 153

    Article  CAS  Google Scholar 

  10. Liu J, Wang J, Chen M and Qian D 2017 Fabrication, electrochemical and catalytic properties of the nanocomposites composed of phosphomolybdic acid and viologen-functionalized multi-walled carbon nanotubes J. Nanopart. Res. 19 264

    Article  Google Scholar 

  11. Niu J, Ma J, Zhao J, Ma P and Wang J 2011 A new 2D network polyoxometalate constructed from Strandberg-type phosphomolybdates linked through binuclear Ca(II) clusters Inorg. Chem. Commun. 14 474

    Article  CAS  Google Scholar 

  12. Ma X, Zhou F, Yue H, Hua J and Ma P 2019 A nano-linear zinc-substituted phosphomolybdate with reactive oxygen species catalytic ability and antibacterial activity J. Mol. Struct. 1198 126865

    Article  CAS  Google Scholar 

  13. Li Z L, Wang L C, Wang J P, You W S and Zhu Z M 2014 Three molybdophosphates based on Strandberg-type anions and Zn (II) - H2biim/H2O subunits: Synthesis, structures and catalytic properties Dalton Trans. 43 5840

    Article  CAS  Google Scholar 

  14. Strandberg R 1973 The molecular and crystal structure of Na6Mo5P2O23(H2O)13 a compound containing sodium-coordinated pentamolybdodiphosphate anions Acta Chem. Scand. 27 1004

    Article  CAS  Google Scholar 

  15. Shi Z, Li F, Zhao J, Yu Z Y, Zheng Y, Chen Z, Guo Q, Zhang G and Luo Y 2019 A 3D inorganic-organic hybrid constructed from Strandberg-type polyoxometalates and silver complexes: Synthesis, structure and properties Inorg. Chem. Commun. 102 104

    Article  CAS  Google Scholar 

  16. Ji Y M, Zhao M, Han P P, Fang Y, Han Q X and Li M X 2018 Cobalt (II) compound derived from Strandberg-type polyoxometalate clusters: Synthesis, crystal structures and biological activities Inorg. Nano-Met. Chem. 48 421

    Article  CAS  Google Scholar 

  17. Xu M, Li F, Wang T and Xu L 2018 Single ion sandwich-type polyoxomolybdates based on Strandberg anions and their electrocatalytic properties Inorg. Chem. Commun. 94 123

    Article  CAS  Google Scholar 

  18. Zhao H, Li J, Fang Y, Chang B, Meng Q, Li M, Wang C and Zhu X 2020 Synthesis, characterization and bioactivities of a new covalent copper (II) compound derived from {P2Mo5O23}6− and thiosemicarbazones Bioorg. Med. Chem. Lett. 30 126781

    Article  CAS  Google Scholar 

  19. Ganesan S V and Natarajan S 2005 Hydrothermal synthesis and structure of [(C4N2H12)3][P2Mo5O23]·H2O and [(C3N2H12)3][P2Mo5O23]·4H2J. Chem. Sci. 117 219

    Article  CAS  Google Scholar 

  20. Upreti S and Ramanan A 2008 Water oligomers in the crystal engineering of phenylenediammonium diphosphopentamolybdates Synth. React. Inorg. Metal-org. Nano-Metal Chem. 38 69

    Article  CAS  Google Scholar 

  21. Asnani M, Kumar D, Duraisamy T and Ramanan A 2012 Crystallization of organically templated phosphomolybdate cluster-based solids from aqueous solution. J. Chem. Sci. 124 1275

    Article  CAS  Google Scholar 

  22. Ma F X, Chen Y G, Yang H Y, Dong X W, Jiang H, Wang F and Li J H 2019 The pH-controlled hydrothermal synthesis and crystal structure of two novel phosphomolybdate derivatives J. Cluster. Sci. 30 123

    Article  CAS  Google Scholar 

  23. Paul L, Dolai M, Panja A and Ali M 2016 Hydrothermal synthesis of two supramolecular inorganic-organic hybrid phosphomolybdates based on Ni (II) and Co) II) ions: Structural diversity and heterogeneous catalytic activities New J. Chem. 40 6931

    Article  CAS  Google Scholar 

  24. Qu M, Feng H, Ma C, Yang Y and Yu X 2017 Synthesis, crystal structure and anti-tumor activity of a novel 3D supramolecular compound constructed from Strandberg-type polyoxometalate and benzimidazole Inorg. Chem. Commun. 81 22

    Article  CAS  Google Scholar 

  25. Thomas J and Ramanan A 2008 Growth of copper pyrazole complex templated phosphomolybdates: Supramolecular interactions dictate nucleation of crystal Cryst. Growth. Des. 8 3390

    Article  CAS  Google Scholar 

  26. Thomas J and Ramanan A 2011 Phosphomolybdate cluster based solids mediated by transition metal complexes Inorg. Chim. Acta 372 243

    Article  CAS  Google Scholar 

  27. Thomas J, Kumar D and Ramanan A 2013 Crystallization of phosphomolybdate clusters mediated by copper azole complexes: Influence of pH and temperature Inorg. Chim. Acta 396 126

    CAS  Google Scholar 

  28. Thomas J, Ph.D. Thesis, Indian Institute of Technology, Delhi, India, 2010

  29. Zhai Q, Wu X, Chen S, Chen L and Lu C 2007 Keggin polyoxometalates – supported assembly of 2D supramolecular isomers: Synthesis, crystal structures and characteristics of two novel hybrid host–guest complexes Inorg. Chim. Acta 360 3484

    Article  CAS  Google Scholar 

  30. Harchani A and Haddad A 2015 Synthesis, structure and property of a new diphosphopentamolybdates [C7H7N2]2[H2P2Mo5O23]0.5.3.5H2O J. Clust. Sci. 26 1645

    Article  CAS  Google Scholar 

  31. Song L, Yu K, Su Z, Wang C, Wang C and Zhou B 2014 Assembly of three supramolecular compounds based on [P2Mo5O23]6− and Ni (II) complexes J. Coord. Chem. 67 522

    Article  CAS  Google Scholar 

  32. Nakamoto K 1978 Infrared and Raman Spectra of Inorganic and Coordination Compounds (New York: John Wiley & Sons)

    Google Scholar 

  33. Bruker Analytical X-ray Systems, SMART: Bruker Molecular Analysis Research Tool, Version 5.618, 2000

  34. Bruker Analytical X-ray Systems, SAINT-NT, Version 6.04, 2001

  35. Bruker Analytical X-ray Systems, SHELXTL-NT, Version 6.10, 2000

  36. Klaus B., University of Bonn, Germany DIAMOND, Version 4.1

  37. Brown I D and Altermatt D 1985 Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database Acta Crystallogr. B41 244

    Article  CAS  Google Scholar 

  38. Jose J, Rajamani A R, Anandaram S, Jose S P, Peter S C and Sreeja P B 2019 Photophysical and electrochemical studies of anchored chromium (III) complex on reduced graphene oxide via diazonium chemistry Appl. Organomet. Chem. e5063

    Google Scholar 

  39. Desiraju G R, Vittal J J and Ramanan A 2011 Crystal Engineering—A Textbook (Singapore: World Scientific Publishing)

    Book  Google Scholar 

  40. Das D and Biradha K 2019 Cocrystals and salts of 3,5-bis(pyridinylmethylene)-piperidin-4-one with aromatic poly-carboxylates and resorcinols: influence of stacking interactions on solid-state luminescence properties Austr. J. Chem. 72 742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JT thanks UGC for research project 2243-MRP/15-16/KLCA019/UGC-SWRO. The authors acknowledge DST and UGC for FIST and CPE program respectively implemented in St. Thomas College (Autonomous), Thrissur. The authors wish to thank Department of Chemistry, IIT Delhi for providing smart apex CCD single-crystal X-ray diffractometer under FIST for collecting data of Solid 1. The authors also acknowledge Sophisticated Test and Instrumentation Centre (STIC), Cochin University for availing Single crystal XRD facility for collecting data of Solid 2, scanning electron microscopy, CHN analyses and thermogravimetric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jency Thomas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J., Winson, C., Singh, B. et al. Role of supramolecular interactions in crystal packing of Strandberg-type cluster-based hybrid solids. J Chem Sci 132, 137 (2020). https://doi.org/10.1007/s12039-020-01826-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01826-w

Keywords

Navigation