Skip to main content
Log in

Influence of ionic liquids and concentration of red phosphorous on luminescent Cu3P nanocrystals

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Highly crystalline, phase pure Cu3P nanocrystals (NCs) have been successfully synthesized using ionic liquid-assisted solvothermal method at relatively low temperature (200 °C). Herein, ionic liquids (ILs) are used as a structure directing/templating agent. Effect of ILs and precursor concentration on crystal phase, crystallite size, lattice strain, morphology and grain size of Cu3P NCs is studied. In the presence of IL, crystallite size and lattice strain significantly change with changing the concentration of red phosphorus. For example, smaller crystallite size (38.5 nm) and compressive lattice strain are obtained when 10 times of red phosphorous is used. However, bigger size (41.9 nm) and tensile lattice strains are obtained for the lower concentration of phosphorous (5 times). At higher phosphorus concentration, hexagonal shaped micro-crystals with prominent grain are observed. HRTEM images reveal that spherical-shaped particles on further agglomeration through Ostwald ripening process form hexagonal-shaped bigger microstructures. However, on doping the rare-earth ions (RE3+ = Ce3+/Tb3+) in the Cu3P NCs show the green luminescence (at 542 nm) which is attributed to the emission of Tb3+ ions. To the best of our knowledge, this is the first report on rare-earth doped Cu3P nanoparticles and shows promise on the luminescence aspect of Cu3P nanomaterials along with its already existing plasmonic and semiconducting properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 1
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Callejas J F, Read C G, Roske C W, Lewis N S and Schaak R E 2016 Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction Chem. Mater. 28 6017

    Article  CAS  Google Scholar 

  2. Wei K, Qi K, Jin Z, Cao J, Zheng W, Chen H and Cui X 2016 One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting ACS Omega 1 1367

    Article  CAS  Google Scholar 

  3. Du H, Kong R-M, Guo X, Qu F and Li J 2018 Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution Nanoscale 10 21617

    Article  CAS  Google Scholar 

  4. Sun M, Liu H, Qu J and Li J 2016 Earth-rich transition metal phosphide for energy conversion and storage Adv. Energy Mater. 13 1600087

    Article  Google Scholar 

  5. Miao S, Hickey S G, Rellinghaus B, Waurisch C and Eychmüller A 2010 Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared J. Am. Chem. Soc. 132 5613

    Article  CAS  Google Scholar 

  6. Greuters J and Rizvi N 2003 UV laser micromachining of silicon, indium phosphide and lithium niobate for telecommunications applications. In: Thomas J. Glynn (ed.), Proceedings of SPIE Opto-Ireland 2002: Optics and photonics technologies and applications Vol. 4876

  7. Luber E J, Mobarok M H and Buriak J M 2013 Solution-processed zinc phosphide (α-Zn3P2) colloidal semiconducting nanocrystals for thin film photovoltaic applications ACS Nano 7 8136

    Article  CAS  Google Scholar 

  8. Bhushan M and Catalano A 1981 Polycrystalline Zn3P2 Schottky barrier solar cells Appl. Phys. Lett. 38 39

    Article  CAS  Google Scholar 

  9. Bachmann K J 1981 Properties, preparation, and device applications of indium phosphide Annu. Rev. Mater. Sci. 11 441

    Article  Google Scholar 

  10. Bera D, Qian L, Tseng T K and Holloway P H 2010 Nanocrystals for thin film photovoltaic applications quantum dots and their multimodal applications: a review Materials 3 2260

    Article  CAS  Google Scholar 

  11. Wolff A, Pallmann J, Boucher R, Weiz A, Brunner E, Doert T and Ruck M 2016 Resource-efficient high-yield ionothermal synthesis of microcrystalline Cu3−xP Inorg. Chem. 55 8844

    Article  CAS  Google Scholar 

  12. Hao J, Yang W, Huang Z and Zhang C 2016 Superhydrophilic and superaerophobic copper phosphide microsheets for efficient electrocatalytic hydrogen and oxygen evolution Adv. Mater. Interfaces 3 1600236

    Article  Google Scholar 

  13. Shen R, Xie J, Ding Y, Liu S-y, Adamski A, Chen X and Li X 2019 Carbon nanotube-supported Cu3P as high-efficiency and low-cost cocatalysts for exceptional semiconductor-free photocatalytic H2 evolution ACS Sustain. Chem. Eng. 7 3243

    Article  CAS  Google Scholar 

  14. Kong M, Song H and Zhou J 2018 Metal–organophosphine framework-derived N,P-codoped carbon-confined Cu3P nanopaticles for superb Na-ion storage Adv. Energy Mater. 8 1801489

    Article  Google Scholar 

  15. Hua S, Qu D, An L, Jiang W, Wen Y, Wang X and Sun Z 2019 Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route Appl. Catal. B 240 253

    Article  CAS  Google Scholar 

  16. Zheng H, Huang X, Gao H, Lu G, Dong W and Wang G 2019 Cu@Cu3P Core–shell nanowires attached to nickel foam as high-performance electrocatalysts for the hydrogen evolution reaction Chem. Eur. J. 25 1083

    CAS  PubMed  Google Scholar 

  17. Wang R, Dong X-Y, Du J, Zhao J-Y and Zang S-Q 2018 MOF-Derived Bi-functional Cu3P nanoparticles coated by a N, P-Co-doped carbon shell for hydrogen evolution and oxygen reduction Adv. Mater. 30 1703711

    Article  Google Scholar 

  18. Wolff A, Doert T, Hunger J, Kaiser M, Pallmann J, Reinhold R, Yogendra S, Giebeler L, Sichelschmidt J, Schnelle W, Whiteside R, Gunaratne H Q N, Nockemann P, Weigand J J, Brunner E and Ruck M 2018 Low-temperature tailoring of copper-deficient Cu3−xP-electric properties, phase transitions, and performance in lithium-ion batteries Chem. Mater. 30 7 111

    Google Scholar 

  19. Manna G, Bose R and Pradhan N 2013 Semiconducting and plasmonic copper phosphide platelets Angew. Chem. 125 6894

    Google Scholar 

  20. Kristensen A, Yang J K, Bozhevolnyi S I, Link S, Nordlander P, Halas N J and Mortensen N A 2017 Plasmonic colour generation Nat. Rev. Mater. 2 16088

    Article  CAS  Google Scholar 

  21. De Trizio L, Gaspari R, Bertoni G, Kriegel I, Moretti L, Scotognella F and Marras S 2015 Cu3-xP nanocrystals as a material platform for near-infrared plasmonics and cation exchange reactions Chem. Mater. 27 1120

    Article  Google Scholar 

  22. Stan M C, Klöpsch R, Bhaskar A, Li J, Passerini S and Winter M 2013 Cu3P binary phosphide: synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries Adv. Energy Mater. 3 231

    Article  CAS  Google Scholar 

  23. Barry B M and Gillan E G 2008 Low-temperature solvothermal synthesis of phosphorus-rich transition-metal phosphides Chem. Mater. 20 2618

    Article  CAS  Google Scholar 

  24. Wang X, Han K, Gao Y, Wan F and Jiang K 2007 Fabrication of novel copper phosphide (Cu3P) hollow spheres by a simple solvothermal method J. Cryst. Growth 307 126

    Article  CAS  Google Scholar 

  25. Liu J, Meyns M, Zhang T, Arbiol J, Cabot A and Shavel A 2018 Triphenylphosphite as the phosphorus source for the scalable and cost-effective production of transition metal phosphides Chem. Mater. 30 1799

    Article  CAS  Google Scholar 

  26. Bol A A, van Beek R and Meijerink A 2002 On the incorporation of trivalent rare earth ions in II–VI semiconductor nanocrystals Chem. Mater. 14 1121

    Article  CAS  Google Scholar 

  27. Chen W, Bovin J O, Joly A G, Wang S g, Su F and Li G 2004 Full-color emission from In2S3 and In2S3:Eu3+ nanoparticles J. Phys. Chem. B 108 11927

    Article  CAS  Google Scholar 

  28. Hu H and Zhang W 2006 Synthesis and properties of transition metals and rare-earth, metals doped ZnS nanoparticles Opt. Mater. 28 536

    Article  CAS  Google Scholar 

  29. Kenyon A J 2002 Recent developments in rare-earth doped materials for optoelectronics Prog. Quantum Electron. 26 225

    Article  CAS  Google Scholar 

  30. Sharma R K, Mudring A-V and Ghosh P 2017 Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behavior J. Lumin. 189 44

    Article  CAS  Google Scholar 

  31. Ghosh P, Sharma R K, Chouryal Y N and Mudring A-V 2017 Size of the rare-earth ions: a key factor in phase tuning and morphology control of binary and ternary rare-earth fluoride materials RSC Adv. 7 33467

    Article  CAS  Google Scholar 

  32. Ghosh P and Patra A 2005 Understanding the influence of nanoenvironment on luminescence of rare-earth ions PRAMANA J. Phys. 65 901

    Article  CAS  Google Scholar 

  33. Dahl J A, Maddux B L S and Hutchison J E 2007 Toward greener nanosynthesis Chem. Rev. 107 2228

    Article  CAS  Google Scholar 

  34. Sharma R K, Chouryal Y N, Chaudhari S, Saravanakumar J, Dey S R and Ghosh P 2017 Adsorption-driven catalytic and photocatalytic activity of phase tuned In2S3 nanocrystals synthesized via ionic liquids ACS Appl. Mater. Interfaces 9 11651

    Article  CAS  Google Scholar 

  35. Weingärtner H 2008 Understanding ionic liquids at the molecular level: facts, problems, and controversies Angew. Chem. Int. Ed. 47 654

    Article  Google Scholar 

  36. Marsh K N, Boxall J A and Lichtenthaler R 2004 Room temperature ionic liquids and their mixtures—a review Fluid Phase Equilib. 219 93

    Article  CAS  Google Scholar 

  37. Sharma R K, Nigam S, Chouryal Y N, Nema S, Bera S P, Bhargava Y and Ghosh P 2019 Eu-Doped BaF2 nanoparticles for bioimaging applications ACS Appl. Nano Mater. 2 927

    Article  CAS  Google Scholar 

  38. Sharma R K, Chouryal Y N, Nigam S, Saravanakumar J, Barik S and Ghosh P 2018 Tuning the crystal phase and morphology of the photoluminescent indium sulphide nanocrystals and their adsorption-based catalytic and photocatalytic applications ChemistrySelect 3 8171

    Article  CAS  Google Scholar 

  39. Parnham E R, Slawin A M Z and Morris R E 2007 Ionothermal synthesis of β-NH4AlF4 and the determination by single crystal X-ray diffraction of its room temperature and low temperature phases J. Solid State Chem. 180 49

    Article  CAS  Google Scholar 

  40. Arco S D, Laxamana R T, Giron O D and Obliosca J M 2009 Synthesis of [RMIM] acetate halogen-free ionic liquids for use as greener solvents in Diels-Alder reaction Philipp. J. Sci. 138 133

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge for financial support from the Science and Engineering Research Board (SERB) and Board of Research in Nuclear Sciences (BRNS), Government of India. The authors acknowledge Sophisticated Instrumentation Centre (SIC) for SEM, and Department of Chemistry for PXRD analysis. The authors also acknowledge the AIIMS New Delhi for TEM characterization support from PURSE programme sanctioned by Department of Science and Technology (DST), Govt of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PUSHPAL GHOSH.

Additional information

Special Issue on Materials Chemistry

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHOURYAL, Y.N., SHARMA, R.K., ACHARJEE, D. et al. Influence of ionic liquids and concentration of red phosphorous on luminescent Cu3P nanocrystals. J Chem Sci 131, 93 (2019). https://doi.org/10.1007/s12039-019-1665-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1665-y

Keywords

Navigation