Skip to main content

Advertisement

Log in

A high-performance gel polymer electrolyte based on poly(vinylidene fluoride)/thermoplastic polyurethane/poly(propylene carbonate) for lithium-ion batteries

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Abstract

Fibrous membranes of composites of poly(vinylidene fluoride) (PVDF)/thermoplastic polyurethane (TPU)/poly(propylene carbonate) (PPC) are prepared with different concentrations by electrospinning method. The physical properties of the films are characterized, such as morphology, porosity, thermal stability and mechanical properties. After electrospun films with different concentrations are activated to gel polymer electrolyte (GPE), we test their electrochemical properties. The morphology and the thermal stability of the PVDF/TPU/PPC nanofibers (NFs) with a concentration of 12% are the best. It shows the high tensile strength of 9.9 MPa and the maximum elongation of 110.8%. The ionic conductivity of its corresponding GPE is as high as \(5.32\,\hbox {mS cm}^{-1}\), and the electrochemical stability window is up to 5.4 V at room temperature. In addition, it shows a high initial charge capacity of \(165.8\,\hbox {mAh g}^{-1}\) and a high initial discharge capacity of \(165.1\,\hbox { mAh g}^{-1}\). The excellent properties make the PVDF/TPU/PPC based GPE (12%) more suitable for lithium-ion batteries.

Graphical abstract

Gel polymer electrolytes were prepared by electrospinning technology and applied to lithium-ion batteries. A series of characterizations were carried out to determine the system of the best comprehensive performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yu Y, Ji X B and Fan H J 2018 Post lithium ion batteries for emerging energy storage technologies Green Energy Environ. 3 1

    Article  Google Scholar 

  2. Tang Z Y 2017 Non-noble metal anode based dual-ion batteries:promising high-energy and low-cost energy storage devices Sci. China Mater. 60 368

    Article  CAS  Google Scholar 

  3. Yue Y and Liang H 2015 Hierarchical micro-architectures of electrodes for energy storage J. Power Sources 284 435

    Article  CAS  Google Scholar 

  4. Liu J Q, Wu X F, He J Y, Li J and Lai Y Q 2017 Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery Electrochim. Acta 235 500

    Article  CAS  Google Scholar 

  5. Tarascon J-M and Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359

    Article  CAS  Google Scholar 

  6. Xiao L, Li Y W, Yi J-Y, Meng W, Deng B-H and Liu J-P 2018 Enhanced performance of solid-state \(\text{ Li-O }_{2 }\) battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode Rare Met. 37 527

    Article  CAS  Google Scholar 

  7. Cheng Q, Cui Z Y, Li J B, Qin S H, Yan F and Li J X 2014 Preparation and performance of polymer electrolyte based on poly(vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery J. Power Sources 266 401

    Article  CAS  Google Scholar 

  8. Wienk I M, Boom R M, Beerlage M A M, Bulte A M W, Smolders C A and Strathmann H 1996 Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers J. Membr. Sci. 113 361

    Article  CAS  Google Scholar 

  9. Choi E-S and Lee S-Y 2011 Particle size-dependent, tunable porous structure of a \(\text{ SiO }_{2}\)/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery J. Mater. Chem. 21 14747

    Article  CAS  Google Scholar 

  10. Fasciani C, Panero S and Hassoun J 2015 Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries J. Power Sources 294 180

    Article  CAS  Google Scholar 

  11. Wu N, Cao Q and Wang X Y 2011 A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries J. Power Sources 196 8638

    Article  CAS  Google Scholar 

  12. Horibe H and Taniyama M 2006 Poly(vinylidene fluoride) crystal structure of poly(vinylidene fluoride) and poly(methyl methacrylate) blend after annealing J. Electrochem. Soc. 153 2347

    Google Scholar 

  13. Huang X Y, Zeng S S, Liu J J, He T, Sun L Y, Xu D H, Yu X Y, Luo Y, Zhou W Y and Wu J F 2015 High-performance electrospun poly(vinylidene fluoride)/poly(propylene carbonate) gel polymer electrolyte for lithium-ion batteries J. Chem. Phys. C 119 27882

    Article  CAS  Google Scholar 

  14. Nicotera I, Coppola L and Oliviero C 2006 Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes Solid State Ion. 177 581

    Article  CAS  Google Scholar 

  15. Li Z, Wei J and Feng S 2008 PVDF/PMMA brushes membrane for lithium-ion rechargeable batteries prepared via preirradiation grafting technique J. Polym. Sci. Part B: Polym. Phys. 46 751

    Article  CAS  Google Scholar 

  16. Chiu F C and Yeh S C 2015 Comparison of PVDF/MWNT, PMMA/MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties Polym. Test. 45 114

    Article  CAS  Google Scholar 

  17. Uludağ A A, Tokur M and Algul H 2016 High stable Li-air battery cells by using PEO and PVDF additives in the TEGDME/LiPF6 electrolytes Int. J. Hydrogen Energy 41 6954

    Article  Google Scholar 

  18. Elashmawi I S, Elsayed N H and Altalhi F A 2014 The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles J. Alloys Compd. 617 877

    Article  CAS  Google Scholar 

  19. Deng F L, Wang X E and He 2015 Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries J. Membr. Sci. 491 82

    Article  CAS  Google Scholar 

  20. Nthumbi R M, Adelodun A A and Ngila J C 2017 Electrospun and functionalized PVDF/PAN composite for the removal of trace metals in contaminated water Phys. Chem. Earth Parts A/B/C 100 225

    Article  Google Scholar 

  21. Wu Q Y, Liang H Q and Gu L 2016 PVDF/PAN blend separators via thermally induced phase separation for lithium ion batteries Polymer 107 54

    Article  CAS  Google Scholar 

  22. Zhu Y, Yin M and Liu H S 2017 Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes Compos. Part B 112 31

    Article  CAS  Google Scholar 

  23. Vanheumen J D and Stevens J R 1995 The role of lithium salts in the conductivity and phase morphology of a thermoplastic polyurethane ACS Pub. 28 4268

    CAS  Google Scholar 

  24. Kuo H-H, Chen W-C and Wen T C 2002 A novel composite gel polymer electrolyte for rechargeable lithium batteries J. Power Sources 110 27

    Article  CAS  Google Scholar 

  25. Wu N, Jing B, Cao Q and Wang X Y 2011 A novel electrospun TPU/PVdF porous fibrous polymer electrolyte for lithium ion batteries J. Power Sources 196 8638

    Article  CAS  Google Scholar 

  26. Zeng S, Wang S, Xiao M, Han D and Meng Y 2011 Preparation and properties of biodegradable blend containing poly (propylene carbonate) and starch acetate with different degrees of substitution carbohydrate Polymers 86 1260

    CAS  Google Scholar 

  27. Du L, Qu B, Meng Y and Zhu Q 2006 Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation Compos. Sci. Technol. 66 913

    Article  CAS  Google Scholar 

  28. Li X H, Meng Y Z, Wang S J, Rajulu A V and Tjong S C 2004 Completely biodegradable composites of poly(propylene carbonate) and short, lignocellulose fiber Hildegardia populifolia J. Polym. Sci., Part B: Polym. Phys. 42 666

    Article  CAS  Google Scholar 

  29. Shi X and Gan Z 2007 Preparation and characterization of poly(propylene carbonate)/montmorillonite nanocomposites by solution intercalation Eur. Polym. J. 43 4852

    Article  CAS  Google Scholar 

  30. Zhou D, Zhou R, Chen C, Yee W, Kong J, Ding G and Lu X 2013 Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices J. Phys. Chem. B 117 7783

    Article  CAS  Google Scholar 

  31. Liu Y W, Peng X X, Cao Q, Jing B, Wang X Y and Deng Y Y 2017 Gel polymer electrolyte based on poly(vinylidene fluoride)/thermoplastic polyurethane/polyacrylonitrile by the electrospinning technique J. Phys. Chem. C 121 19140

    Article  CAS  Google Scholar 

  32. Croce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi G B and Scrosati B 1994 Synthesis and characterization of highly conducting gel electrolytes Electrochim. Acta 39 2187

    Article  CAS  Google Scholar 

  33. Huang X, Zeng S and Liu J 2015 High-performance electrospun poly(vinylidene fluoride)/poly (propylene carbonate) gel polymer electrolyte for lithium-ion batteries J. Phys. Chem. C 119 27882

    Article  CAS  Google Scholar 

  34. Pouyan S S, Gereon S and Dirk U S 2018 Non-invasive investigation of predominant processes in the impedance spectra of high energy lithium-ion batteries with Nickel-Cobalt-Aluminum cathodes J. Power Sources 406 185

    Article  Google Scholar 

  35. Balasundaram M, Vishwanathan R, Christopher Y and Palani B 2017 Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra J. Power Sources 361 300

    Article  Google Scholar 

  36. Macdonald J R 1974 Simplified impedance/frequency-response results for intrinsically conducting solids and liquids J. Chem. Phys. 61 3977

    Article  CAS  Google Scholar 

  37. Li L, Liu L, Qing Y, Zhang Z, Yan N and Wu Y 2018 Stretchable alkaline poly(acrylic acid) electrolyte with high ionic conductivity enhanced by cellulose nanofibrils Electrochim. Acta 270 302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The workers expressed their appreciation to the National Natural Science Foundation Youth Program (No. 51203131st).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 515 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Liu, Y., Cao, Q. et al. A high-performance gel polymer electrolyte based on poly(vinylidene fluoride)/thermoplastic polyurethane/poly(propylene carbonate) for lithium-ion batteries. J Chem Sci 131, 49 (2019). https://doi.org/10.1007/s12039-019-1627-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1627-4

Keywords

Navigation