Skip to main content
Log in

Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Gold nanoparticles decorated on silicate sol-gel matrix embedded manganese ferrite (\(\hbox {MnFe}_{{2}}\hbox {O}_{4})\)-reduced graphene oxide (rGO) nanocomposites were synthesized through a facile chemical method. The prepared samples were characterized by using powder X-ray diffraction (XRD), UV–vis absorption spectroscopy (UV-VIS), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The Au nanostructures on rGO-\(\hbox {MnFe}_{{2}}\hbox {O}_{4}\) improved the electrocatalytic activity of the rGO-\(\hbox {MnFe}_{{2}}\hbox {O}_{{4}}\)@Au composite-materials-modified electrodes towards glucose oxidation. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity of the rGO-\(\hbox {MnFe}_{{2}}\hbox {O}_{{4}}\)@Au modified electrodes towards glucose oxidation in 0.1 M NaOH at a less-positive potential (0.2 V) in the absence of any enzyme or redox mediator. The nanocomposite-modified electrode (GCE/EDAS/rGO-\(\hbox {MnFe}_{{2}}\hbox {O}_{{4}}\)@Au) was successfully used for the amperometric sensing of glucose and the experimental detection limit of 10 \(\upmu \hbox {M}\) glucose was observed. The common interfering agents did not interfere with the detection of glucose. The present sensor showed good stability, reproducibility, and selectivity. The nanocomposite-modified electrode was successfully used for the determination of glucose in the urine sample.

Graphical abstract

\(\hbox {MnFe}_{{2}}\hbox {O}_{4}\) based nanocomposite materials were prepared and used for enhanced electrochemical sensing of glucose. The gold nanoparticles decorated reduced graphene oxide-\(\hbox {MnFe}_{{2}}\hbox {O}_{4}\) embedded in the functionalized silicate matrix. (EDAS/rGO-\(\hbox {MnFe}_{{2}}\hbox {O}_{{4}}\)@Au) nanocomposite-material-modified electrode was used for the electrochemical sensing of glucose. The nanocomposite-material-modified electrode showed the enhanced catalytic activity for glucose oxidation and the detection limit was estimated as 2 \(\upmu \hbox {M}\) and also the modified electrode showed good stability, and selectivity in the presence of interferents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vignesh R H, Sankar K V, Amaresh S, Lee Y S and Selvan R K 2015 Synthesis and characterization of \(\text{ MnFe }_{{2}}\text{ O }_{{4}}\) nanoparticles for impedometric ammonia gas sensor Sens. Actuat. B 220 50

    Article  CAS  Google Scholar 

  2. Zhu H, Zhang S, Huang Y, Wu L and Sun S 2013 Monodisperse \(\text{ M }_{{x}}\text{ Fe }_{3-x}\text{ O }_{{4}}\) (M \(=\) Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction Nano Lett. 13 2947

    Article  CAS  Google Scholar 

  3. Albuquerque A S, Tolentino M V C, Ardisson J D, Moura F C C, Mendonça R and Macedo W A A 2012 Nanostructured ferrites: Structural analysis and catalytic activity Ceram. Int. 38 2225

    Article  CAS  Google Scholar 

  4. Li Y, Shen J, Hu Y, Qiu S, Min G, Song Z, Sun Z and Li C 2015 General flame approach to chainlike \(\text{ MFe }_{{2}}\text{ O }_{{4}}\) spinel (M = Cu, Ni, Co, Zn) nanoaggregates for reduction of nitroaromatic compounds Ind. Eng. Chem. Res. 54 9750

    Article  CAS  Google Scholar 

  5. Mathew D S and Juang R 2007 An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions Chem. Eng. J. 129 51

    Article  CAS  Google Scholar 

  6. Xiao Y, Zai J, Tao L, Li B, Han Q, Yu C and Qian X 2013 \(\text{ MnFe }_{{2}}\text{ O }_{{4}}\)–graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries Phys. Chem. Chem. Phys. 15 3939

    Article  CAS  Google Scholar 

  7. Salamon J, Sathishkumar Y, Ramachandran K, Lee Y S, Yoo D J, Kim A R and Gnana Kumar G 2015 One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine Biosens. Bioelectron. 64 269

    Article  CAS  Google Scholar 

  8. Guo S, Zhang G, Guo Y and Yu J C 2013 Graphene oxide-\(\text{ Fe }_{{2}}\text{ O }_{{3}}\) hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants Carbon 60 437

    Article  CAS  Google Scholar 

  9. Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183

    Article  CAS  Google Scholar 

  10. Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Graphene and graphene oxide: Synthesis, properties, and applications Adv. Mater. 22 3906

    Article  CAS  Google Scholar 

  11. Wang X, Liu E and Zhang X 2014 Non-enzymatic glucose biosensor based on copper oxide–reduced graphene oxide nanocomposites synthesized from water isopropanol solution Electrochim. Acta 130 253

    Article  CAS  Google Scholar 

  12. Lu P, Yu J, Lei Y, Lu S, Wang C, Liu D and Guo Q 2015 Synthesis and characterization of nickel oxide hollow spheres–reduced graphene oxide–nafion composite and its biosensing for glucose Sens. Actuat. B Chem. 208 90

    Article  CAS  Google Scholar 

  13. Dong X, Xu H, Wang X, Huang Y, Chan-Park M B, Zhang H, Wang L, Huang W and Chen P 2012 3D graphene cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection ACS Nano 6 3206

    Article  CAS  Google Scholar 

  14. Bharathi S, Fishelson N and Lev O 1999 Direct synthesis and characterization of gold and other noble metal nanodispersions in sol–gel-derived organically modified silicates Langmuir 15 1929

    Article  CAS  Google Scholar 

  15. Rameshkumar P, Viswanathan P and Ramaraj R 2014 Silicate sol–gel stabilized silver nanoparticles for sensor applications toward mercuric ions, hydrogen peroxide and nitrobenzene Sens. Actuat. B Chem. 202 1070

    Article  CAS  Google Scholar 

  16. Manivannan S and Ramaraj R 2012 Synthesis of cyclodextrin–silicate sol–gel composite embedded gold nanoparticles and its electrocatalytic application Chem. Eng. J. 210 195

    Article  CAS  Google Scholar 

  17. Jena B K and Raj C R 2006 Enzyme-free amperometric sensing of glucose by using gold nanoparticles Chem. A Eur. J. 12 2702

    Article  CAS  Google Scholar 

  18. Hoa L T, Chung J S and Hur S H 2016 A highly sensitive enzyme-free glucose sensor based on \(\text{ Co }_{{3}}\text{ O }_{{4}}\) nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis Sens. Actuat. B Chem. 223 76

    Article  CAS  Google Scholar 

  19. Tian K, Prestgard M and Tiwari A 2014 A review of recent advances in nonenzymatic glucose sensors Mater. Sci. Eng. C 41 100

    Article  CAS  Google Scholar 

  20. Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W and Tour J M 2010 Improved synthesis of graphene oxide ACS Nano 4 4806

    Article  CAS  Google Scholar 

  21. Guo P, Zhang G, Yu J, Li H and Zhao X S 2012 Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite Colloids Surf. A Physicochem. Eng. Asp. 395 168

    Article  CAS  Google Scholar 

  22. Jakhmola A, Celentano M, Vecchione R, Manikas A, Battista E, Calcagno V and Netti P A 2017 Self-assembly of gold nanowire networks into gold foams: Production, ultrastructure and applications Inorg. Chem. Front. 4 1033

    Article  CAS  Google Scholar 

  23. Bai R G, Muthoosamy K, Zhou M, Ashokkumar M, Huang N M and Manickam S 2017 Sonochemical and sustainable synthesis of graphene-gold (G-Au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide Biosens. Bioelectron. 87 622

    Article  Google Scholar 

  24. Neogy R K, Nath R and Raychaudhuri A K 2017 Thermal transport enhancement in gold nanofluid containing network like structure Mater. Chem. Phys. 186 478

    Article  CAS  Google Scholar 

  25. Yi Z, Luo J, Tan X, Yi Y, Yao W, Kang X, Ye X, Zhu W, Duan T, Yi Y and Tang Y 2015 Mesoporous gold sponges: Electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates Sci. Rep. 5 16137

    Article  CAS  Google Scholar 

  26. Zha D, Xiong P and Wang X 2015 Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost supercapacitors with high rate capability Electrochim. Acta 185 218

    Article  CAS  Google Scholar 

  27. Rameshkumar P, Praveen R and Ramaraj R 2015 Electroanalysis of oxygen reduction and formic acid oxidation using reduced graphene oxide/gold nanostructures modified electrode J. Electroanal. Chem. 754 118

    Article  CAS  Google Scholar 

  28. Nurzulaikha R, Lim H N, Harrison I, Lim S S, Pandikumar A, Huang N M, Lim S P, Thien G S H, Yusoff N and Ibrahim I 2015 Graphene/\(\text{ SnO }_{{2}}\) nanocomposite-modified electrode for electrochemical detection of dopamine Sens. Bio Sens. Res. 5 42

    Article  Google Scholar 

  29. Thanh T D, Balamurugan J, Hwang J Y, Kim N H and Lee J H 2016 In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing Carbon 98 90

    Article  CAS  Google Scholar 

  30. Bai Y, Yang W, Sun Y and Sun C 2008 Enzyme-free glucose sensor based on a three-dimensional gold film electrode Sens. Actuat. B Chem. 134 471

    Article  CAS  Google Scholar 

  31. Wang J, Cao X, Wang X, Yang S and Wang R 2014 Electrochemical oxidation and determination of glucose in alkaline media based on Au(111)-like nanoparticle array on indium tin oxide electrode Electrochim. Acta 138 174

    Article  CAS  Google Scholar 

  32. Lang X Y, Fu H Y, Hou C, Han G, Yang P, Liu Y and Jiang Q 2013 Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors Nat. Commun. 4 2169

    Article  Google Scholar 

  33. Kong F Y, Li X R, Zhao W W, Xu J J and Chen H C 2012 Graphene oxide–thionine–Au nanostructure composites: Preparation and applications in non-enzymatic glucose sensing Electrochem. Commun. 14 59

    Article  CAS  Google Scholar 

  34. Karra S, Wooten M, Griffith W and Gorski W 2016 Morphology of gold nanoparticles and electrocatalysis of glucose oxidation Electrochim. Acta 218 8

    Article  CAS  Google Scholar 

  35. Soomro R A, Akyuz O P, Ozturk R and Ibupoto Z H 2016 Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material Sens. Actuat. B Chem. 233 230

    Article  CAS  Google Scholar 

  36. Matsumoto F, Harada M, Koura N and Uesugi S 2003 Electrochemical oxidation of glucose at Hg adatom-modified Au electrode in alkaline aqueous solution Electrochem. Commun. 5 42

    Article  CAS  Google Scholar 

  37. Luo Y, Kong F, Li C, Shi J, Lv W and Wang W 2016 One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose Sens. Actuat. B Chem. 234 625

    Article  CAS  Google Scholar 

  38. Cherevko S and Chung C 2010 The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection Talanta 80 1371

    Article  CAS  Google Scholar 

  39. Fleischmann M, Korinek K and Pletcher D 1972 The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes J. Chem. Soc. Perkin. Trans. 2 1396

    Article  Google Scholar 

  40. Shu H, Chang G, Su J, Cao L, Huang Q, Zhang Y, Xia T and He Y 2015 Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing Sens. Actuat. B 220 331

    Article  CAS  Google Scholar 

  41. Hu Y, Jin J, Wu P, Zhang H and Cai C 2010 Graphene–gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation Electrochim. Acta 56 491

    Article  CAS  Google Scholar 

  42. Bai W, Nie F, Zheng J and Sheng Q 2014 Novel silver nanoparticle-manganese oxyhydroxide-graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing ACS Appl. Mater. Interfaces 6 5439

    Article  CAS  Google Scholar 

  43. Ismail N S, Le Q H, Yoshikawa H, Saito M and Tamiya E 2014 Development of non-enzymatic electrochemical glucose sensor based on graphene oxide nanoribbon—gold nanoparticle hybrid Electrochim. Acta 146 98

    Article  CAS  Google Scholar 

  44. Cherevko S and Chung C 2009 Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection Sens. Actuat. B Chem. 142 216

    Article  CAS  Google Scholar 

  45. Fu S, Fan G, Yang L and Li F 2015 Non-enzymatic glucose sensor based on Au nanoparticles decorated ternary Ni–Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite Electrochim. Acta 152 146

    Article  CAS  Google Scholar 

  46. Shu H, Chang G, Su J, Cao L, Huang Q, Zhang Y, Xia T and He Y 2015 Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing Sens. Actuat. B Chem. 220 331

    Article  CAS  Google Scholar 

  47. Zheng Y, Li P, Li H and Chen S 2014 Controllable growth of cobalt oxide nanoparticles on reduced graphene oxide and its application for highly sensitive glucose sensor Int. J. Electrochem. Sci. 9 7369

    Google Scholar 

  48. Liu Y, Dong Y, Guo C X, Cui Z, Zheng L and Li C M 2012 Protein-directed in situ synthesis of gold nanoparticles on reduced graphene oxide modified electrode for nonenzymatic glucose sensing Electroanalysis 24 2348

    Article  CAS  Google Scholar 

  49. Zhang Y, Wang Y, Jia J and Wang J 2012 Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers Sens. Actuat. B 171 580

    Article  Google Scholar 

Download references

Acknowledgements

RR acknowledges the (No. 21(1006)/15/EMR-II) Council of Scientific and Industrial Research-Emeritus Scientist Scheme for financial support. TRM is the recipient of DST-INSPIRE Senior Research Fellowship (No. IF150326).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Gnana Kumar or Ramasamy Ramaraj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 421 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhura, T.R., Kumar, G.G. & Ramaraj, R. Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application. J Chem Sci 131, 35 (2019). https://doi.org/10.1007/s12039-019-1611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1611-z

Keywords

Navigation