Skip to main content

Advertisement

Log in

Effect of anharmonicity on energy relaxation of a dissipative quantum oscillator

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The effect of anharmonicity on the energy relaxation of excited state has been studied by means of a dissipative oscillator. The present study also sheds light on the recent femtosecond stimulated Raman spectroscopy results of Kovalenko et al. (J. Chem. Phys. 139 011101 2013) on optical cooling of trans-stilbene. It has been shown that anharmonicity plays a crucial role in explaining the time-dependent frequency shift as well as the time evolution of bandwidth of \(\nu _{C=C}\) mode of trans-stilbene in excited state, found in experiment.

Graphical abstract

The effect of anharmonicity on the energy relaxation of a vibrationally excited state is presented in this paper. The paper also suggest that at initial stage IVR plays a key role in changing the effective temperature of optically excited molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pigliucci A, Duvanel G, Daku L M L and Vauthey E 2007 Investigation of the Influence of Solute-Solvent Interactions on the Vibrational Energy Relaxation Dynamics of Large Molecules in Liquids J. Phys. Chem. A 111 6135

    Article  CAS  Google Scholar 

  2. Heitz R, Veit M, Ledentsov N N, Hoffmann A, Bimberg D, Ustinov V M, Kopev P S and Alferov Z I 1997 Energy relaxation by multiphonon processes in InAs/GaAs quantum dots Phys. Rev. B 56 10435

    Article  CAS  Google Scholar 

  3. Morisaki H, Koretsune T, Hotta C, Takeya J, Kimura T and Wakabayashi Y 2014 Large surface relaxation in the organic semiconductor tetracene Nat. Commun. 5 5400

    Article  CAS  Google Scholar 

  4. Ishizaki A and Fleming G R 2012 Quantum coherence in photosynthetic light harvesting Annu. Rev. Condens. Matter Phys. 3 333

    Article  CAS  Google Scholar 

  5. von Lintig J, Kiser P D, Golczak M and Palczewski K 2010 The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision Trends Biochem. Sci. 35 400

    Article  Google Scholar 

  6. Kukura P, McCamant D W, Yoon S, Wandschneider D B and Mathies R A 2005 Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman Science 310 1006

    Article  CAS  Google Scholar 

  7. Kumar P and Pollak E 2014 Energy relaxation of a dissipative quantum oscillator J. Chem. Phys. 141 234509

    Article  Google Scholar 

  8. Pollak E, Shao J and Zhang D H 2008 Effects of initial correlations on the dynamics of dissipative systems Phys. Rev. E 77 021107

    Article  Google Scholar 

  9. Levine A M, Shapiro M and Pollak E 1988 Hamiltonian theory for vibrational dephasing rates of small molecules in liquids J. Chem. Phys. 88 1959

    Article  CAS  Google Scholar 

  10. Rips I and Pollak E 1990 Quantum Kramers model: Solution of the turnover problem Phys. Rev. A 41 5366

    Article  CAS  Google Scholar 

  11. Waldeck D H 1991 Photoisomerization dynamics of stilbenes Chem. Rev. 91 415

    Article  CAS  Google Scholar 

  12. Hochstrasser R M 1980 Picosecond processes in the isomerism of stilbenes Pure Appl. Chem. 52 2683

    Article  CAS  Google Scholar 

  13. Saltiel J and Charlton J 1980 Organic Chemistry: A Series of Monographs Vol. 42 (New York: Elsevier) p. 25

  14. Meyer A, Schroeder J and Troe J 1999 Photoisomerization of trans-stilbene in moderately compressed gases: Pressure-dependent effective barriers J. Phys. Chem. A 103 10528

    Article  CAS  Google Scholar 

  15. Sundström V and Gillbro T 1984 Dynamics of the isomerization of trans-stilbene in n-alcohols studied by ultraviolet picosecond absorption recovery Chem. Phys. Lett. 109 538

    Article  Google Scholar 

  16. Courtney S and Fleming G 1985 Photoisomerization of stilbene in low viscosity solvents: comparison of isolated and solvated molecules J. Chem. Phys. 83 215

    Article  CAS  Google Scholar 

  17. Balk M W and Fleming G R 1986 Unimolecular reactions in isolated and collisional systems: Is the transition-state rate an upper limit for the isomerization of stilbene? J. Phys. Chem. 90 3975

    Article  CAS  Google Scholar 

  18. Gershinsky G and Pollak E 1997 Unimolecular reactions in the gas and liquid phases: A possible resolution to the puzzles of the trans-stilbene isomerization J. Chem. Phys. 107 812

    Article  CAS  Google Scholar 

  19. Pollak E, Talkner P and Berezhkovskii A 1997 A theory for nonisothermal unimolecular reaction rates J. Chem. Phys. 107 3542

    Article  CAS  Google Scholar 

  20. Courtney S H, Balk M W, Philips L A, Webb S P, Yang D, Levy D H and Fleming G R 1988 Unimolecular reactions in isolated and collisional systems: deuterium isotope effect in the photoisomerization of stilbene J. Chem. Phys. 89 6697

    Article  CAS  Google Scholar 

  21. Troe J 1985 Quantitative analysis of photoisomerization rates in trans-stilbene and 4-methyl-trans-stilbene Chem. Phys. Lett. 114 241

    Article  CAS  Google Scholar 

  22. Nordholm S 1989 Photoisomerization of stilbene-a theoretical study of deuteration shifts and limited internal vibrational redistribution J. Chem. Phys. 137 109

    CAS  Google Scholar 

  23. Wadi H and Pollak E 1999 Theory of laser cooling of polyatomic molecules in an electronically excited state J. Chem. Phys. 110 11890

    Article  CAS  Google Scholar 

  24. Tatchen J and Pollak E 2008 Ab initio spectroscopy and photoinduced cooling of the trans-stilbene molecule J. Chem. Phys. 128 164303

    Article  Google Scholar 

  25. Hamaguchi H-O 1996 Solvent-induced dynamic polarization and vibrational dephasing of electronically excited molecules Mol. Phys. 89 463

    Article  CAS  Google Scholar 

  26. Kovalenko S, Dobryakov A, Pollak E and Ernsting N 2013 Communication: Optical cooling of trans-stilbene J. Chem. Phys. 139 011101

    Article  CAS  Google Scholar 

  27. Iwata K and Hamaguchi H-o 1992 Picosecond structural relaxation of S1 trans-stilbene in solution as revealed by time-resolved Raman spectroscopy Chem. Phys. Lett. 196 462

    Article  CAS  Google Scholar 

  28. Iwata K, Ozawa R and Hamaguchi H-o 2002 Analysis of the Solvent-and Temperature-Dependent Raman Spectral Changes of S1 trans-Stilbene and the Mechanism of the trans to cis Isomerization: Dynamic Polarization Model of Vibrational Dephasing and the CC Double-Bond Rotation J. Phys. Chem. A 106 3614

    Article  CAS  Google Scholar 

  29. Oxtoby D W 1979 Dephasing of molecular vibrations in liquids Adv. Chem. Phys. 40 1

    CAS  Google Scholar 

  30. Leitner D M, Levine B, Quenneville J, Martínez T J and Wolynes P G 2003 Quantum energy flow and trans-stilbene photoisomerization: an example of a non-RRKM reaction J. Chem. Phys. A 107 10706

    Article  CAS  Google Scholar 

  31. Weston R E and Barker J R 2006 On modeling the pressure-dependent photoisomerization of trans-stilbene by including slow intramolecular vibrational energy redistribution J. Chem. Phys. A 110 7888

    Article  CAS  Google Scholar 

  32. Tuckerman M and Berne B 1993 Vibrational relaxation in simple fluids: Comparison of theory and simulation J. Chem. Phys. 98 7301

    Article  CAS  Google Scholar 

  33. Dove J and Jones D G 1971 Numerical Calculation of Vibrational Relaxation and Dissociation for a Quantum Anharmonic Oscillator J. Chem. Phys. 55 1531

    Article  CAS  Google Scholar 

  34. Ishizaki A and Tanimura Y 2006 Modeling vibrational dephasing and energy relaxation of intramolecular anharmonic modes for multidimensional infrared spectroscopies J. Chem. Phys. 125 084501

    Article  Google Scholar 

  35. Bader J S and Berne B 1994 Quantum and classical relaxation rates from classical simulations J. Chem. Phys. 100 8359

    Article  CAS  Google Scholar 

  36. Bader J S, Berne B, Pollak E and Hänggi P 1996 The energy relaxation of a nonlinear oscillator coupled to a linear bath J. Chem. Phys. 104 1111

    Article  CAS  Google Scholar 

  37. Dobryakov A, Ioffe I, Granovsky A, Ernsting N and Kovalenko S 2012 Femtosecond Raman spectra of cis-stilbene and trans-stilbene with isotopomers in solution J. Chem. Phys. 137 244505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RK acknowledges DST, Govt. of India for financial assistance. PK acknowledges DST, Govt. of India for the financial support through sanctioned project [No. ECR/2016/000279 ]. We also thank Prof N. Ernsting for sending us experimental data of Figure 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, P. Effect of anharmonicity on energy relaxation of a dissipative quantum oscillator. J Chem Sci 131, 23 (2019). https://doi.org/10.1007/s12039-019-1599-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1599-4

Keywords

Navigation