Skip to main content

Advertisement

Log in

Synthesis and anion binding properties of the smallest meso-expanded calix[4]pyrrole

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The smallest core expanded calix[4]pyrrole derivative (5) was synthesized via incorporation of an additional sp\(^{3}\) meso-carbon at the periphery of the macrocycle. Anion binding study of the macrocycle reveals clearly the effect of core size on its affinity towards various tested ions (\({\hbox {F}}^{-}\), \({\hbox {Cl}}^{-}\), \({\hbox {Br}}^{-}\), \({\hbox {I}}^{-}\), \({\hbox {AcO}}^{-}\), \(\hbox {H}_{2} \hbox {PO}_{4}^{-}\), \(\hbox {HSO}_{4}^{-}\), \(\hbox {ClO}_{4}^{-}\), \(\hbox {PF}_{6}^{-}\), \(\hbox {NO}_{3}^{-}\), \(\hbox {NO}_{2}^{-}\), \(\hbox {N}_{3}^{-}\) and \({\hbox {CN}}^{-}\)). The macrocycle displays the highest affinity towards fluoride and acetate ions, albeit with reduced affinities compared to parent octamethylcalix[4]pyrrole.

Graphical abstract

SYNOPSIS The first example of the smallest expanded calix[4]pyrrole is reported. Anion binding study of the macrocycle reveals clearly the effect of core size on its affinity towards various tested ions (\({\hbox {F}}^{-}\), \({\hbox {Cl}}^{-}\), \({\hbox {Br}}^{-}\), \({\hbox {I}}^{-}\), \({\hbox {AcO}}^{-}\), \(\hbox {H}_{2} \hbox {PO}_{4}^{-}\), \(\hbox {HSO}_{4}^{-}\), \(\hbox {ClO}_{4}^{-}\), \(\hbox {PF}_{6}^{-}\), \(\hbox {NO}_{3}^{-}\), \(\hbox {NO}_{2}^{-}\), \(\hbox {N}_{3}^{-}\) and \({\hbox {CN}}^{-}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsuo S, Kiyomiya K and Kurebe M 1998 Mechanism of toxic action of fluoride in dental fluorosis: whether trimeric G proteins participate in the disturbance of intracellular transport of secretory ameloblast exposed to fluoride Arch. Toxicol. 72 798

    Article  CAS  PubMed  Google Scholar 

  2. (a) Takeuchi M, Shioya T and Swager T M 2001 Allosteric Fluoride Anion Recognition by a Doubly Strapped Porphyrin Angew. Chem. Int. Edit. 40 3372; (b) Mizuno T, Wei W-H, Eller L R and Sessler J L 2002 Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites: Efficient Fluoride Anion Receptors J. Am. Chem. Soc. 124 1134; (c) Jose D A, Kumar D K, Ganguly B and Das A 2004 Efficient and Simple Colorimetric Fluoride Ion Sensor Based on Receptors Having Urea and Thiourea Binding Sites Org. Lett. 6 3445; (d) Gomez D E, Fabbrizzi L and Licchelli M 2005 Why, on Interaction of Urea-Based Receptors with Fluoride, Beautiful Colors Develop J. Org. Chem. 70 5717; (e) Cametti M and Rissanen K 2009 Recognition and sensing of fluoride anion Chem. Commun. 2809; (f) Jeong S-D, Nowak-Krol A, Kim Y, Kim S-J, Gryko D T and Lee C-H 2010 meso-Alkylidene (m-benzi)pentaphyrin: a modified pentaphyrin bearing exocyclic double bonds at meso-positions Chem. Commun. 46 8737; (g) Wade C R, Broomsgrove A E J, Aldridge S and Gabbai F P 2010 Fluoride Ion Complexation and Sensing Using Organoboron Compounds Chem. Rev. 110 3958; (h) Sokkolingam P and Lee C-H 2011 Highly Sensitive Fluorescence “Turn-On” Indicator for Fluoride Anion with Remarkable Selectivity in Organic and Aqueous Media J. Org. Chem. 76 3820; (i) Mahanta S P and Panda P K 2017 Bis(Pyrrole-benzimidazole) conjugates as novel colorimetric sensor for anions J. Chem. Sci. 129 647

  3. (a) Baeyer A 1886 Adolf Baeyer: Ueber ein Condensationsproduct von Pyrrol mit Aceton Ber. Dtsch. Chem. Ges. 19 2184; (b) Gale P A, Sessler J L, Kral V and Lynch V 1996 Calix[4]pyrroles: Old Yet New Anion-Binding Agents J. Am. Chem. Soc. 118 5140

  4. (a) Gale P A, Sessler J L and Kral V 1998 Calixpyrroles Chem. Commun. 1; (b) Sessler J L Anzenbacher P Jr, Jursikova K, Miyaji H, Genge J W, Tvermoes N A, Allen W E and Shiver J A 1998 Functionalized calix[4]pyrroles Pure Appl. Chem. 70 2401; (c) Gale P A, Anzenbacher P Jr and Sessler J L 2001 Calixpyrroles II Coord. Chem. Rev. 222 57; (d) Kim D S and Sessler J L 2015 Calix[4]pyrroles: versatile molecular containers with ion transport, recognition, and molecular switching functions Chem. Soc. Rev. 44 532; (e) Ding Y, Zhu W -H and Xie Y 2017 Development of Ion Chemosensors Based on Porphyrin Analogues Chem. Rev. 117 2203

  5. Gale P A, Genge J W, Kral V, McKervey M A, Sessler J L and Walker A 1997 First Synthesis of an Expanded Calixpyrrole Tetrahedron Lett. 38 8443

    Article  CAS  Google Scholar 

  6. (a) Turner B, Botoshansky M and Eichen Y 1998 Extended Calixpyrroles: meso-Substituted Calix[6]pyrroles Angew. Chem. Int. Ed. 37 2475; (b) Sessler J L, Anzenbacher P Jr, Shriver J A, Jursikova K, Lynch V M and Marquez M 2000 Direct Synthesis of Expanded Fluorinated Calix[n]pyrroles: Decafluorocalix[5]pyrrole and Hexadecafluorocalix[8]pyrrole J. Am. Chem. Soc. 122 12061; (c) Cafeo G, Kohenke F H, Torre G L La, White A J P and Williams D J 2000 From Large Furan-Based Calixarenes to Calixpyrroles and Calix[n]furan[m]pyrroles: Syntheses and Structures Angew. Chem. Int. Edit. 39 1496; (d) Jang Y-S, Kim H-J, Lee P-H and Lee C-H 2000 Synthesis of calix[n]furano[n]pyrroles and calix[n]thieno[n]pyrroles (n=2,3,4) by ‘3+1’ approach Tetrahedron Lett. 41 2919; (e) Nagarajan A, Jang Y-S and Lee C-H 2000 Convenient Route to Super-Expanded Calixpyrroles: Synthesis of Calix[n]furano[m]pyrroles (n = 3, 4, 6, 8 and m = 2, 4) Org. Lett. 2 3115; (f) Nagarajan A, Ka J W and Lee C-H 2001 Synthesis of expanded calix[n]pyrroles and their furan or thiophene analogues Tetrahedron 57 7323; (g) Cafeo G, Kohnke F H, Parisi M F, Nascone R P, Torre G L La and Williams D J 2002 The Elusive \(\beta \)-Unsubstituted Calix[5]pyrrole Finally Captured Org. Lett. 4 2695; (h) Lee E C, Park Y-K, Kim J-H, Hwang H, Kim Y-R and Lee C-H 2002 Bithiophene-containing super-expanded calixpyrrole analogues Tetrahedron Lett. 43 9493; (i) Sessler J L, An D, Cho W-S and Lynch V 2003 Calix[n]bipyrroles: Synthesis, Characterization, and Anion-Binding Studies Angew. Chem. Int. Edit. 42 2278; (j) Sessler J L, Cho W –S, Gross D E, Shriver J A, Lynch V M and Marquez M 2005 Anion Binding Studies of Fluorinated Expanded Calixpyrroles J. Org. Chem. 70 5982; (k) Bruno G, Cafeo G, Kohnke F H and Nicolo F 2007 Tuning the anion binding properties of calixpyrroles by means of \(p\)-nitrophenyl substituents at their meso-positions Tetrahedron 63 10003; (l) Medrano M B, -Garcia L C, –Celedon C A C and –Garcia J C 2011 Synthesis of a new calix[n]pyrrole: meso-pentaspirocyclohexyl calix[5]pyrrole Tetrahedron Lett. 52 136; (m) Park J S, Bejger C, Larsen K R, Nielsen K A, Jana A, Lynch V M, Jeppesen J O, Kim D and Sessler J L 2012 Synthesis and recognition properties of higher order tetrathiafulvalene (TTF) calix[n]pyrroles (n = 4–6) Chem. Sci. 3 2685

  7. (a) Piatek P, Lynch V M and Sessler J L 2004 Calix[4]pyrrole[2]carbazole: A New Kind of Expanded Calixpyrrole J. Am. Chem. Soc. 126 16073; (b) Sessler J L, An D, Cho W-S, Lynch V and Marquez M 2005 Calix[n]bispyrrolylbenzenes: Synthesis, Characterization, and Preliminary Anion Binding Studies Chem. Eur. J. 11 2001; (c) Cafeo G, Kohnke F H, White A J P, Garozzo D and Messina A 2007 Syntheses, Structures, and Anion-Binding Properties of Two Novel Calix[2]benzo[4]pyrroles Chem. Eur. J. 13 649; (d) Pushina M, Koutnik P, Nishiyabu R, Minami T, Savechenkov P and Anzenbacher P 2018 Anion Sensing by Fluorescent Expanded Calixpyrroles Chem. Eur. J. 24 4879

  8. Mahanta S P, Kumar B S, Baskaran S, Sivasankar Ch and Panda P K 2012 Colorimetric Sensing of Fluoride Ion by New Expanded Calix[4]pyrrole through Anion-\(\pi \) Interaction Org. Lett. 14 548

    Article  CAS  PubMed  Google Scholar 

  9. Chandra B, Mahanta S P, Pati N N, Baskaran S, Kanaparthi R K, Sivasankar C and Panda P K 2013 Calix[2]bispyrrolylarenes: New Expanded Calix[4]pyrroles for Fluorometric Sensing of Anions via Extended \(\pi \)-Conjugation Org. Lett. 15 306

    Article  CAS  PubMed  Google Scholar 

  10. Kumar B S and Panda P K 2014 1D water chain stabilized by meso-expanded calix[4]pyrrole CrystEngComm 16 8669

    Article  CAS  Google Scholar 

  11. Armarego W L F and Chai C 2003 In Purification of laboratory chemicals \(6^{th}\) edn. (Burkington: Elsevier)

  12. Littler B J, Miller M A, Hung C-H, Wagner R W, O’Shea D F, Boyle P D and Lindsey J S 1999 Refined Synthesis of 5-Substituted Dipyrromethanes J. Org. Chem. 64 1391

    Article  CAS  Google Scholar 

  13. Oxford Diffraction. CrysAlis CCD and CrysAlis RED. Version 1.171.33.55. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England 2008

  14. SHELXL -Version 2014/7; Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1993–2014

  15. SAINT, version 6.45 /8/6/03 and version 8.34A, Bruker AXS, 2003–2014

  16. Sheldrick G M SADABS and SADABS 2014/5, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1997–2014

  17. (a) Spek A L PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 1980–2016; (b) Spek A L 2009 Acta Cryst. D65 148

  18. Wilcox C S 1991 In Frontiers in Supramolecular Organic Chemistry and Photochemistry H–J Schneider (Ed.) (Weinheim: VCH) p. 123

  19. Gaussian 09, (Revision C.01), Frisch M J et al. Gaussian, Inc., Wallingford CT, 2010. For full reference see the Supplementary Information.

  20. Anzenbacher P Jr, Jursikova K, Lynch V M, Gale P A and Sessler J L 1999 Calix[4]pyrroles Containing Deep Cavities and Fixed Walls. Synthesis, Structural Studies, and Anion Binding Properties of the Isomeric Products Derived from the Condensation of \(p\)-Hydroxyacetophenone and Pyrrole J. Am. Chem. Soc. 121 11020

    Article  CAS  Google Scholar 

  21. (a) Schmidtchen F P 2002 Surprises in the Energetics of Host-Guest Anion Binding to Calix[4]pyrrole Org. Lett. 4 431; (b) Sessler J L, Gross D E, Cho W-S, Lynch V M, Schmidtchen F P, Bates G W, Light M E and Gale P A 2006 Calix[4]pyrrole as a Chloride Anion Receptor: Solvent and Countercation Effects J. Am. Chem. Soc. 128 12281

  22. Sessler J L, An D, Cho W-S and Lynch V 2003 Calix[2]bipyrrole[2]furan and Calix[2]bipyrrole[2]thiophene: New Pyrrolic Receptors Exhibiting a Preference for Carboxylate Anions Angew. Chem. Int. Ed. 42 2278

    Article  CAS  Google Scholar 

  23. Sessler J L, An D, Cho W-S and Lynch V 2003 Calix[2]bipyrrole[2]furan and Calix[2]bipyrrole[2]thiophene: New Pyrrolic Receptors Exhibiting a Preference for Carboxylate Anions J. Am. Chem. Soc. 125 13646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CSIR, India (Project no. 01(2449)/10/EMR-II) and SERB, India (Project no. SB/S1/IC-56/2012). Financial and infrastructure support from the UGC, New Delhi (through the UPE and CAS programs) and the DST, New Delhi (through the PURSE and FIST programs) are gratefully acknowledged. Authors thank Center for Modelling, Simulation and Design (CMSD), University of Hyderabad, Hyderabad, India for computational facility. BSK thanks CSIR and DST India for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeepta K Panda.

Additional information

Special Issue on Modern Trends in Inorganic Chemistry

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8892 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B.S., Panda, P.K. Synthesis and anion binding properties of the smallest meso-expanded calix[4]pyrrole. J Chem Sci 130, 90 (2018). https://doi.org/10.1007/s12039-018-1480-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1480-x

Keywords

Navigation