Skip to main content

Advertisement

Log in

Liquid phase hydrogenation of furfural using 2-propanol over \(\hbox {ZrO}_{2}\)

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Hydrogenation of furfural is carried out efficiently by \(\hbox {ZrO}_{2}\) using 2-propanol as a hydrogen source in liquid phase. Various characterizations like XRD, Pyridine-FTIR, \(\hbox {NH}_{3}\)-TPD (acidity), \(\hbox {CO}_{2}\)-TPD (basic property), and \(\hbox {N}_{2}\) physisorption study for surface area analysis were used to understand the properties and to correlate with the activity results. These results revealed that zirconia calcined at low temperature (573 K) possesses amorphous phase, high surface area and large number of acid-base sites which are helpful in achieving higher activity.

Graphical Abstract

Synopsis. Transfer hydrogenation of biomass-derived Furfural to Furfuryl alcohol using 2-propanol acting as solvent and hydrogen donor over \(\hbox {ZrO}_{2}\) in liquid phase conditions at atmospheric pressure is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Prasenjit B, Deepa A K, Tanushree K and PareshLaxmikant D 2014 Value addition to lignocellulosics and biomass-derived sugars: An insight into solid acid-based catalytic methods J. Chem. Sci. 126 373

    Article  CAS  Google Scholar 

  2. Nishita L, Narasimha Rao K, Atul S N, Ganesh K and Satyanarayana C H 2014 Novel catalysts for valorization of biomass to value-added chemicals and fuels J. Chem. Sci. 126 403

    Article  CAS  Google Scholar 

  3. Reza S, Taghi Goldani M and Saman D 2013 Silica-supported ionic liquid as highly efficient catalyst for one-pot synthesis of acenaphtho[1,2-b]furan compounds J. Chem. Sci. 125 511

    Article  CAS  Google Scholar 

  4. TelleriaI A, Requies J, Guemez M B and Arias P L 2012 Furfural production from xylose + glucose feedings and simultaneous \(\text{ N }_{2}\)-stripping Green Chem. 14 3132

    Article  CAS  Google Scholar 

  5. Marcotullio G and Jong D W 2010 Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions Green. Chem. 12 1739

    Article  CAS  Google Scholar 

  6. Nakagawa Y, Nakazawa H, Watanabe H and Tomishige K 2012 Total Hydrogenation of Furfural over a Silica-Supported Nickel Catalyst Prepared by the Reduction of a Nickel Nitrate Precursor ChemCatChem 4 1791

    Article  CAS  Google Scholar 

  7. Taylor M J, Durndell L J, Isaacs M A, Parlett C M A, Wilson K, Lee A F and Kyriakou G 2016 Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions Appl. Catal., B 180 580

    Article  CAS  Google Scholar 

  8. Chen H, Ruan H, Lu X, Fu J, Langrish T and Lu X 2018 Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in near-critical isopropanol over Cu/MgO-\(\text{ Al }_{2}\text{ O }_{3}\) catalyst Mol. Catal. 445 94

    Article  CAS  Google Scholar 

  9. Rao R S, Baker R T K and Vannice M 1999 Furfural hydrogenation over carbon-supported copper Catal. Lett. 60 51

    Article  CAS  Google Scholar 

  10. Liu H, Zhang W, Huang W, He Y, Liu L, Wang C and Lin H 2017 Mechanism and kinetics of the electrocatalytic hydrogenation of furfural to furfuryl alcohol J. Electroanal. Chem. 804 248

    Article  CAS  Google Scholar 

  11. Liu L, Lou H and Chen M 2018 Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT) Appl. Catal. A 550 1

    Article  CAS  Google Scholar 

  12. Yuan Q, Zhang D, van Haandel L, Ye F, Xue T, Hensen E J M and Guan Y 2015 Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs J. Mol. Catal. A: Chem. 406 58

    Article  CAS  Google Scholar 

  13. Prakruthi H R, Chandrashekara B M, Jai Prakash B S and Bhat Y S 2017 Hydrogenation efficiency of highly porous Cu-Al oxides derived from dealuminated LDH in the conversion of furfural to furfuryl alcohol J. Ind. Eng. Chem. 62 96

    Google Scholar 

  14. Neeli C K P, Chung Y M and Ahn W S 2017 Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol by using Ultrasmall Rh Nanoparticles Embedded on Diamine-Functionalized KIT-6 ChemCatChem 24 4570

    Article  CAS  Google Scholar 

  15. Ruiz J R and Sanchidrian C J 2007 Heterogeneous Catalysis in the Meerwein-Ponndorf-Verley Reduction of Carbonyl Compounds Curr. Org. Chem. 11 1113

    Article  CAS  Google Scholar 

  16. Chuah G K, Jaenicke S, Zhu Y Z and Liu S H 2006 Meerwein-Ponndorf-Verley Reduction over Heterogeneous Catalysts Curr. Curr. Org. Chem. 10 1639

    Article  CAS  Google Scholar 

  17. Glinski M 2010 Highlydiastereoselective transfer hydrogenation of 4-t-butylcyclohexanone in the presence of magnesium oxide React. Kinet. Mech. Catal. 99 93

    CAS  Google Scholar 

  18. Biradar N S, Hengne A M, Sakate S S, Swami R K and Rode C V 2016 Single Pot Transfer Hydrogenation and Aldolization of Furfural Over Metal Oxide Catalysts Catal. Lett. 146 1611

    Article  CAS  Google Scholar 

  19. Koppadi K S, Chada R R, Enumula S S, Rama Rao K S and Raju B D 2017 Metal-Free Hydrogenation of Biomass Derived Furfural into Furfuryl Alcohol Over Carbon–MgO Catalysts in Continuous Mode Catal. Lett. 147 1278

    Article  CAS  Google Scholar 

  20. Zhu Y, Chuah G and Jaenicke S 2004 Chemo- and regioselectiveMeerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta J. Catal. 227 1

    Article  CAS  Google Scholar 

  21. Sanchidrian C J, Hidalgo J M and Ruiz J R 2006 Reduction of heterocyclic carboxaldehydes via Meerwein–Ponndorf–Verley reaction Appl. Catal. A 303 23

    Article  CAS  Google Scholar 

  22. Tanabe K and Yamaguchi T 1994 Acid-base bifunctional catalysis by \(\text{ ZrO }_{2}\) and its mixed oxides Catal. Today 20 185

    Article  CAS  Google Scholar 

  23. Montesa V, Minambresa J F, Khalilovc A N, Boutonnetb M, Marinasa J M, Urbanoa F J, Maharramovc A M and Marinas A 2017 Chemoselective hydrogenation of furfural to furfuryl alcohol on \(\text{ ZrO }_{2}\) systems synthesized through the microemulsion method Catal. Today 306 89

    Article  CAS  Google Scholar 

  24. Tang X, Hu L, Sun Y, Zhao G, Hao W and Lin L 2013 Conversion of biomass-derived ethyl levulinate into \(\gamma \)-valerolactone via hydrogen transfer from supercritical ethanol over a \(\text{ ZrO }_{2}\) catalyst RSC Adv. 3 10277

    Article  CAS  Google Scholar 

  25. Gonell F, Boronat M and Corma A 2017 Structure-reactivity relationship in isolated Zr sites present in Zr- zeolite and \(\text{ ZrO }_{2}\) for the Meerwein-Ponndorf-Verley reaction Catal. Sci. Technol. 7 2865

    Article  CAS  Google Scholar 

  26. Liu S H, Jaenicke S and Chuah G K 2002 Hydrous Zirconia as a Selective Catalyst for the Meerwein–Ponndorf–Verley Reduction of Cinnamaldehyde J. Catal. 206 321

    Article  CAS  Google Scholar 

  27. Zhu Y, Liu S H, Jaenicke S and Chuah G K 2004 Zirconia catalysts in Meerwein-Ponndorf-Verley reduction of citral Catal. Today 9 7249

    Google Scholar 

  28. Tahmasebpour M, Babaluo A A and Razavi Aghjeh M K 2008 Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method J. Eur. Ceram. Soc. 28 773

    Article  CAS  Google Scholar 

  29. Wang J, Jaenicke S and Chuah G K 2014 Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to \(\gamma \)-valerolactone via Meerwein–Ponndorf–Verley reduction RSC Adv. 4 13481

    Article  CAS  Google Scholar 

  30. Shibagaki M, Takahashi K, Kuno H and Matsushita H 1990 The Catalytic Activity of Hydrous Zirconium Oxide Calcined at Several Temperatures Bull. Chem. Soc. Jpn. 63 258

    Article  CAS  Google Scholar 

  31. Mohan V, Venkateshwarlu V, Pramod C V, Raju B D and Rao K S R 2014 Vapour phase hydrocyclisation of levulinic acid to \(\gamma \)-valerolactone over supported Ni catalysts Catal. Sci. Technol. 4 1253

    Article  CAS  Google Scholar 

  32. Dou X, Mohan D, Pittman Jr. C U and Yang S 2012 Remediating fluoride from water using hydrous zirconium oxide Chem. Eng. J. 198 236

    Article  CAS  Google Scholar 

  33. Rahman N, Haseen U and Fazeel Kha M 2015 Cyclic tetra[(indolyl)-tetra methyl]-diethane-1,2-diamine (CTet) impregnated hydrous zirconium oxide as a novel hybrid material for enhanced removal of fluoride from water samples RSC Adv. 5 39062

    Article  CAS  Google Scholar 

  34. Varkolu M, Velpula V, Ganji S, Burri D R and Rama Rao K S 2015 Ni nanoparticles supported on mesoporous silica(2D, 3D) architectures: highly efficient catalysts for the hydrocyclization of biomass-derived levulinic acid RSC Adv. 5 57201

    Article  CAS  Google Scholar 

  35. Fuente-Hernandez A, Lee R, Beland N, Zamboni I and Lavoie J M 2017 Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst Energies 10 286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PN and MV acknowledge UGC, New Delhi, India for the award of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Rama Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaiah, P., Pramod, C.V., Rao, M.V. et al. Liquid phase hydrogenation of furfural using 2-propanol over \(\hbox {ZrO}_{2}\). J Chem Sci 130, 66 (2018). https://doi.org/10.1007/s12039-018-1469-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1469-5

Keywords

Navigation