Skip to main content

Advertisement

Log in

Enhancement of visible light irradiation photocatalytic activity of \(\hbox {SrTiO}_{3}\) nanoparticles by Pt doping for oxidation of cyclohexane

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this research, strontium titanate (\(\hbox {SrTiO}_{3})\) nanoparticles were synthesised using an ultrasonic method, then were doped with Pt using a photo-assisted deposition method to form \(\hbox {Pt}/\hbox {SrTiO}_{3}\) nanoparticles. \(\hbox {SrTiO}_{3}\) and \(\hbox {Pt}/\hbox {SrTiO}_{3}\) nanoparticles were characterized by XRD, XPS, TEM, BET surface area UV–Vis and PL techniques in order to explore their chemical and physical properties. The visible light irradiation photocatalytic performances of \(\hbox {SrTiO}_{3}\) nanoparticles and \(\hbox {Pt}/\hbox {SrTiO}_{3}\) nanoparticles for photocatalytic oxidation of cyclohexane was investigated, and the results revealed that platinum was doped onto the \(\hbox {SrTiO}_{3}\) nanoparticles surfaces as metallic platinum, and the weight percent of doped platinum greatly affected the band gap, and the 1.5 wt% \(\hbox {Pt}/\hbox {SrTiO}_{3}\) nanoparticles showed the highest photocatalytic activity due to the low band gap. The stability of the \(\hbox {Pt}/\hbox {SrTiO}_{3}\) nanoparticles for the photocatalytic oxidation of cyclohexane was examined and the results revealed that the \(\hbox {Pt}/\hbox {SrTiO}_{3}\) nanoparticles could be used five times without losing their efficiency.

Graphical Abstract

TEM images of \(\hbox {SrTiO}_{3 }\) (A) and 1.5 wt% \(\hbox {Pt}/\hbox {SrTiO}_{3}\) (B) nanoparticles, which showed that \(\hbox {SrTiO}_{3}\) is a spherical nanoparticle (A) and that platinum was doped as dots (B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Uruş S, Adıgüzel H and İncesu M 2016 Synthesis of novel \(\text{ N }_{4}\text{ O }_{4}\) type bis(diazoimine)–metal complexes supported on mesoporous silica: Microwave assisted catalytic oxidation of cyclohexane, cyclooctane, cyclohexene and styrene Chem. Eng. J. 296 90

    Article  Google Scholar 

  2. Lončarević D, Krstić J, Dostanić J, Manojlović D, Čupić Ž and Jovanović D M 2010 Cyclohexane oxidation and cyclohexyl hydroperoxide decomposition by poly(4-vinylpyridine-co-divinylbenzene) supported cobalt and chromium complexes Chem. Eng. J. 157 181

    Article  Google Scholar 

  3. Silva A R, Mourão T and Rocha J 2013 Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands Catal. Today 203 81

    Article  CAS  Google Scholar 

  4. Liu S, Liu Z and Kawi S 1998 Liquid-phase oxidation of cyclohexane using Co-P-MCM-41 catalyst Korean J. Chem. Eng. 15 510

    Article  CAS  Google Scholar 

  5. Chen J, Cen J, Xu X and Li X 2016 The application of heterogeneous visible light photocatalysts in organic synthesis Catal. Sci. Technol. 6 349

    Article  CAS  Google Scholar 

  6. Lee S-Y and Park S-J 2013 \(\text{ TiO }_{2}\) Photocatalyst for water treatment applications J. Ind. Eng. Chem. 19 1761

    Article  CAS  Google Scholar 

  7. Luengas A, Barona A, Hort C, Gallastegui G, Platel V and Elias A 2015 A review of indoor air treatment technologies Rev. Environ. Sci. Biotechnol. 14 499

    Article  CAS  Google Scholar 

  8. Litter M I 1999 Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems Appl. Catal. B 23 89

    Article  CAS  Google Scholar 

  9. Carneiro J T, Yang C-C, Moulijn J A and Mul G 2011 The effect of water on the performance of \(\text{ TiO }_{2}\) in photocatalytic selective alkane oxidation J. Catal. 277 129

    Article  CAS  Google Scholar 

  10. Zhong W, Qiao T, Dai J, Mao L, Xu Q, Zou G, Liu X, Yin D and Zhao F 2015 Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: Enhanced photocatalytic activity in selective oxidation of cyclohexane J. Catal. 330 208

    Article  CAS  Google Scholar 

  11. Kim J, Ichikuni N, Hara T and Shimazu S 2016 Study on the selectivity of propane photo-oxidation reaction on SBA-15 supported Mo oxide catalyst Catal. Today 265 90

    Article  CAS  Google Scholar 

  12. Yu K, Zhang C, Chang Y, Feng Y, Yang Z, Yang T, Lou L-L and Liu S 2017 Novel three-dimensionally ordered macroporous \(\text{ SrTiO }_{3}\) photocatalysts with remarkably enhanced hydrogen production performance Appl. Catal. B 200 514

    Article  CAS  Google Scholar 

  13. He G-L, Zhong Y-H, Chen M-J, Li X, Fang Y-P and Xu Y-H 2016 One-pot hydrothermal synthesis of \(\text{ SrTiO }_{3}\)-reduced graphene oxide composites with enhanced photocatalytic activity for hydrogen production J. Mol. Catal. A 423 70

    Article  CAS  Google Scholar 

  14. Xu Y and Schoonen M A A 2000 The absolute energy positions of conduction and valence bands of selected semiconducting minerals Am. Mineral. 85 543

    Article  CAS  Google Scholar 

  15. Yu H, Ouyang S, Yan S, Li Z, Yu T and Zou Z 2011 Sol–gel hydrothermal synthesis of visible-light-driven Cr-doped \(\text{ SrTiO }_3\) for efficient hydrogen production J. Mater. Chem. 21 11347

    Article  CAS  Google Scholar 

  16. Wang D, Ye J, Kako T and Kimura T 2006 Photophysical and photocatalytic properties of \(\text{ SrTiO }_{3}\) doped with Cr cations on different sites J. Phys. Chem. B 110 15824

    Article  CAS  Google Scholar 

  17. Shen P, Lofaro Jr. J C, Woerner W R, White M G, Su D and Orlov A 2013 Photocatalytic activity of hydrogen evolution over Rh doped \(\text{ SrTiO }_{3}\) prepared by polymerizable complex method Chem. Eng. J. 223 200

    Article  CAS  Google Scholar 

  18. Bi Y, Ehsan M F, Huang Y, Jin J and He T 2015 Synthesis of Cr-doped \(\text{ SrTiO }_{3}\) photocatalyst and its application in visible-light-driven transformation of \(\text{ CO }_{2}\) into \(\text{ CH }_{4}\) J. CO \(_{2}\) Util. 12 43

  19. Ruzimuradov O, Sharipov K, Yarbekov A, Saidov K, Hojamberdiev M, Prasad R M, Cherkashinin G and Riedel R 2015 A facile preparation of dual-phase nitrogen-doped \(\text{ TiO }_{2}{-}\text{ SrTiO }_{3}\) macroporous monolithic photocatalyst for organic dye photodegradation under visible light J. Eur. Ceram. Soc. 35 1815

    Article  CAS  Google Scholar 

  20. Che H, Chen J, Huang K, Hu W, Hu H, Liu X, Che G, Liu C and Shi W 2016 Construction of \(\text{ SrTiO }_{3}/\text{ Bi }_{2}\text{ O }_{3}\) heterojunction towards to improved separation efficiency of charge carriers and photocatalytic activity under visible light J. Alloys Compd. 688 882

    Article  CAS  Google Scholar 

  21. Li J, Wang F, Meng L, Han M, Guo Y and Sun C 2017 Controlled synthesis of \(\text{ BiVO }_{4}/\text{ SrTiO }_{3}\) composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal J. Colloid Interface Sci. 485 116

    Article  CAS  Google Scholar 

  22. Hammoumraoui I R, Braham A C, Roy L P and Kappenstein C 2011 Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by tert-butyl hydroperoxide over Pt/oxide catalysts Bull. Mater. Sci.  34 1127

    Article  Google Scholar 

  23. Azam E S 2014 Photocatalytic oxidation of cyanide under visible light by Pt doped \(\text{ AgInS }_{2}\) nanoparticles J. Ind. Eng. Chem. 20 4008

    Article  Google Scholar 

  24. Xiong Z, Wang H, Xu N, Li H, Fang B, Zhao Y, Zhang J and Zheng C 2015 Photocatalytic reduction of \(\text{ CO }_{2}\) on \(\text{ Pt }^{2+}\)\(\text{ Pt }^{0}/\text{ TiO }_{2}\) nanoparticles under UV/Vis light irradiation: A combination of \(\text{ Pt }^{2+}\) doping and Pt nanoparticles deposition J. Hydrogen Energy 40 10049

    Article  CAS  Google Scholar 

  25. Ong W-J, Tan L-L, Chai S-P and Yong S-T 2015 Heterojunction engineering of graphitic carbon nitride \((\text{ g }\text{- }\text{ C }_{3}\text{ N }_{4})\) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane Dalton Trans. 44 1249

    Article  CAS  Google Scholar 

  26. Faye J, Capron M, Takahashi A, Paul S, Katryniok B, Fujitani T and Dumeignil F 2015 Effect of dispersion on to dimethoxymethane over \(\text{ MoOx }/\text{ TiO }_{2}\) Energy Sci. Eng. 3 115

    Article  CAS  Google Scholar 

  27. Hassan M M, Khan W, Azam A and Naqvi A H 2014 Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions J. Lumin. 145 160

    Article  CAS  Google Scholar 

  28. Pal M, Pal U, Gracia J M, Jiménez Y and Pérez- Rodríguez F 2012 Effects of crystallization and dopant concentration on the emission behavior of \(\text{ TiO }_{2}\):Eu nanophosphors Nanoscale Res. Lett. 7. doi:10.1186/1556-276X-7-1

  29. Şen F and Gökagaç G 2007 Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalyst J. Phys. Chem. C 111 5715

    Article  Google Scholar 

  30. Brunauer S, Emmett P H and Teller E 1938 Adsorption of gases in multimolecular layers J. Am. Chem. Soc. 60 309

    Article  CAS  Google Scholar 

  31. Vijayan B K, Dimitrijevic N M, Wu J and Gray K A 2010 The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes J. Phys. Chem. C 114 21262

    Article  CAS  Google Scholar 

  32. Chrysicopoulou P, Davazoglou D, Trapalis C and Kordas G 1998 Photocatalytic destruction of methylene blue on Ag@\(\text{ TiO }_2\) with core/shell structure Thin Solid Films 323 188

    Article  CAS  Google Scholar 

  33. Grabowska E, Marchelek M, Klimczuk T, Lisowski W and Zaleska-Medynska A 2017 \(\text{ TiO }_{2}/\text{ SrTiO }_{3}\) and \(\text{ SrTiO }_{3}\) microspheres decorated with Rh, Ru or Pt nanoparticles: Highly UV–vis responsible photoactivity and mechanism J. Catal. 350 159

    Article  CAS  Google Scholar 

  34. Neppolian B, Mine S, Horiuchi Y, Bianchi C L, Matsuoka M, Dionysiou D D and Anpo M 2016 Efficient photocatalytic degradation of organics present in gas and liquid phases using Pt-\(\text{ TiO }_2\)/Zeolite (H-ZSM) Chemosphere 153 237

    Article  CAS  Google Scholar 

  35. Pol R, Guerrero M, García-Lecina E, Altube A, Rossinyol E, Garroni S, Baró M D, Pons J, Sort J and Pellicer E 2016 Ni-, Pt- and (Ni/Pt)-doped \(\text{ TiO }_{2}\) nanophotocatalysts: A smart approach for sustainable degradation of Rhodamine B dye Appl. Catal. B 181 270

    Article  CAS  Google Scholar 

  36. Mohamed R M, McKinney D L and Sigmund W M 2012 Enhanced nanocatalysts Mater. Sci. Eng. R 73 1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (130-94-D1435). The authors acknowledge and thank DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdel Salam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Salam, M., Al-Johani, H. Enhancement of visible light irradiation photocatalytic activity of \(\hbox {SrTiO}_{3}\) nanoparticles by Pt doping for oxidation of cyclohexane. J Chem Sci 129, 1687–1693 (2017). https://doi.org/10.1007/s12039-017-1369-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1369-0

Keywords

Navigation