Skip to main content
Log in

Chemical bonding and charge density distribution analysis of undoped and lanthanum doped barium titanate ceramics

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A-site deficient, Lanthanum substituted Ba1−xLa2x/3TiO3 (x =0.000, 0.005, 0.015, 0.020 and 0.025) ceramics have been synthesized by chemical route. The effects of lanthanum dopant on the BaTiO3 lattice and the electron density distributions in the unit cell of the samples were investigated. Structural studies suggested the reduction in cell parameters and shrinkage in cell volume with the increase in lanthanum content. Chemical bonding and electron density distributions were examined through high resolution maximum entropy method (MEM). The mid bond electron density values revealed the enhancement of covalent nature between titanium and oxygen ions and predominant ionic nature between barium and oxygen ions. Average grain sizes were estimated for the undoped and doped samples. SEM investigations showed the existence of smaller grains with large voids in between them.

Influences of La doping on the electronic structure of BaTiO3 ceramics were investigated. Mid bond charge density distributions and chemical bonding are clearly revealed quantitatively as well as qualitatively using high resolution maximum entropy method (MEM) through powder X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Vasilescu C A, Curecheriu L P, Mitoşeriu L and Ianculescu A C 2015 UPB Sci. Bull. Ser. B 77 95

    CAS  Google Scholar 

  2. Yoon D -H 2006 J. Ceram. Process Res. 7 343

    Google Scholar 

  3. Dimitrovska-Lazova S, Aleksovska S and Tzvetkov P 2015 J. Chem. Sci. 127 1173

    Article  Google Scholar 

  4. Wang S -F, Hsu Y -F, Huang H -S and Liu Y -J 2011 Ceram. Int. 37 1327

    Article  CAS  Google Scholar 

  5. Chou X, Zhao Z, Zhang W and Zhai J 2010 Mater. Des. 31 3703

    Article  CAS  Google Scholar 

  6. Melo D M A, César A, Martinelli A E, Silva Z R, Leite E R, Longo E and Pizannic P S 2004 J. Solid. State. Chem. 177 670

    Article  CAS  Google Scholar 

  7. Maa N, Zhang B -P, Yang W -G and Guob D 2012 J. Eur. Ceram. Soc. 32 1059

    Article  Google Scholar 

  8. Li W, Xu Z, Chu R, Fu P and Hao J 2010 J. Alloy. Compd. 499 255

    Article  CAS  Google Scholar 

  9. Glinchuk M D, Bykov I P, Kornienko S M, Laguta V V, Slipenyuk A M, Bilous A G, V’yunov O I and Yanchevskiib O Z 2000 J. Mater. Chem. 10 941

    Article  CAS  Google Scholar 

  10. Buscaglia M T, Buscaglia V, Viviani M, Nanni P and Hanuskova M 2000 J. Eur. Ceram. Soc. 20 1997

    Article  CAS  Google Scholar 

  11. Valdez-Nava Z, Tenailleau C, Guillemet-Fritsch S, El Horr N, Lebey T, Dufour P, Durand B and Chane-Ching J Y 2010 J. Phys. Chem. Solids 72 17

    Article  Google Scholar 

  12. Castro M S, Salgueiro W and Somozab A 2007 J. Phys. Chem. Solids 68 1315

    Article  CAS  Google Scholar 

  13. Freeman C L, Dawson J A, Chen H -R, Ben L, Harding J H, Morrison F D, Sinclair D C and West A R 2013 Adv. Funct. Mater. 23 3925

    Article  CAS  Google Scholar 

  14. Brutchey R L, Cheng G, Qian G and Morse D E 2008 Adv. Mater. 20 1029

    Article  CAS  Google Scholar 

  15. Wada S, Yasuno H, Hoshina T, Nam S -M, Kakemoto H and Takaaki T 2003 J. Appl. Phys. 42 6188

    Article  CAS  Google Scholar 

  16. Lin T -F and Hu C -T 1990 J. Am. Ceram. Soc. 73 531

    Article  CAS  Google Scholar 

  17. Saravanan R 2009 Phys. Scr. 79 1

    Article  Google Scholar 

  18. Evarestov R A, Smirnov V P and Usvyat D E 2003 Solid. State. Commun. 127 423

    Article  CAS  Google Scholar 

  19. Kutty T R N 1986 J. Chem. Sci. 96 581

    Article  CAS  Google Scholar 

  20. Tiwari R M, Gadhvi M, Nag A, Vasanthacharya N Y and Gopalakrishnan J 2010 J. Chem. Sci. 122 529

    Article  CAS  Google Scholar 

  21. Syed Ali K S, Saravanan R, Pashchenko A V and Pashchenko V P 2010 J. Alloy. Compd. 501 307

    Article  CAS  Google Scholar 

  22. Collins D M 1982 Nature 298 49

    Article  CAS  Google Scholar 

  23. Rother A, Reibold M and Lichte H 2006 Phys. Rev. B 74 134116 (1-8)

    Google Scholar 

  24. Shannon R D 1976 Acta. Crystallogr. 32 751

    Article  Google Scholar 

  25. Wenhu Y, Yongping P, Xiaolong C and Jinfei W 2009 JPCS 152 012040

    Google Scholar 

  26. Urek S, Drofenik M and Makovec D 2000 J. Mater. Sci. 35 895

    Article  CAS  Google Scholar 

  27. Lin M -H and Lu H -Y 2002 Mater. Sci. Eng. A323 167

    Article  CAS  Google Scholar 

  28. Rietveld H M 1969 J. Appl. Crystallogr. 2 65

    Article  CAS  Google Scholar 

  29. Petricek V, Dusek M and Palatinus L 2000 In The Crystallographic Computing System JANA 2006 (Praha: Institute of Physics, Academy of Sciences of the Czech Republic)

  30. Wyckoff R W G 1963 In Crystal Structures 1 (London: Inter-space Publishers)

  31. Wodecka-Dus B and Czekaj D 2009 Arch. Metall. Mater. 54 923

    CAS  Google Scholar 

  32. Gorelov B M, Kotenok E V, Makhno S N, Sydorchuk V V, Khalameida S V and Zazhigalov V A 2011 Solid State Electron 56 83

    CAS  Google Scholar 

  33. Vijatovic M M, Stojanovic B D, Bobic J D, Ramoska T and Bowen P 2010 Ceram. Int. 36 1817

    Article  CAS  Google Scholar 

  34. Ruben A D and Izumi F 2004 Super-fast Program PRIMA for the Maximum-Entropy Method (Tsukuba, Ibaraki: Advanced Materials Laboratory, National institute for materials science)

  35. Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653

    Article  CAS  Google Scholar 

  36. Morrison F D, Coats A M, Sinclair D C and West A R 2001 J. Electroceram. 6 219

    Article  CAS  Google Scholar 

  37. Chen Y L and Yang S F 2011 Adv. Appl. Ceram. 110 257

    Article  CAS  Google Scholar 

  38. Morrison F D, Sinclair D C and West A R 1999 J. Appl. Phys. 86 6355

    Article  CAS  Google Scholar 

  39. Ganguly M, Rout S K, Sinha T P, Sharma S K, Park H Y, Ahn C W and Kim I W 2013 J. Alloy. Compd. 579 473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the authorities of The Madura College, Madurai 625 011 for providing lab facilities, continuous support and encouragement to carry out this research work successfully. One of the authors (J M) is thankful to the Management of NMSSVN College, Nagamalai, Madurai 625 019 and UGC for the Faculty Development Programme of XII plan, the period in which this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J MANGAIYARKKARASI.

Additional information

Supplementary Information (SI)

Additional information pertaining to the analysis of chemical bonding in Ba1−xLa2x/3TiO3, the 3D and 2D electron density distribution with the enlarged views of bonding are shown in Figures S1, S2 and S3, which are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 6.99 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MANGAIYARKKARASI, J., SARAVANAN, R. & ISMAIL, M.M. Chemical bonding and charge density distribution analysis of undoped and lanthanum doped barium titanate ceramics. J Chem Sci 128, 1913–1921 (2016). https://doi.org/10.1007/s12039-016-1190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1190-1

Keywords

Navigation