Skip to main content
Log in

Uncatalyzed thermal gas phase aziridination of alkenes by organic azides. Part I: Mechanisms with discrete nitrene species

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Alkene aziridination by azides through uncatalyzed thermal gas phase routes has been studied using the DFT B3LYP/6-31G(d,p) method, where the possible role of discrete nitrene intermediates is emphasized. The thermal decomposition of azides is studied using the MP2/aug-cc-pVDZ strategy as well. The MP2 (but not the B3LYP) results discount the existence of singlet alkylnitrenes where the alkyl group has an α-hydrogen. Addition of the lowest lying singlet and triplet nitrenes R-N (R = H, Me, Ac) to four different alkene substrates leading to aziridine formation was studied by the B3LYP method. Singlet nitrenes with alkenes can yield aziridines via a concerted mechanism, where H-N insertion takes place without a barrier, whereas Me-N shows larger barriers than Ac-N. Methyl substitution in the alkene favors this reaction. Triplet nitrene addition to alkenes is studied as a two-step process, where the initially formed diradical intermediates cyclize to form aziridines by ISC (intersystem crossing) and collapse. Scope for C-C bond rotation in the diradical leads to loss of stereochemical integrity for triplet nitrene addition to cis- and trans-2-butenes. Geometries of the transition states in the various reaction steps studied here are described as “early” or “late” in good accordance with the Hammond postulate.

The addition of free nitrenes to alkene substrates is studied using DFT and MP2 methods. The B3LYP results predict that concerted azide decomposition can yield singlet nitrenes, unlike the MP2 results. Singlet nitrenes insert into alkenes with a modest or no barrier. Triplet nitrenes employ a step-wise pathway to give aziridines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Breslow D S 1970 In Nitrenes (New York: Wiley Interscience)

  2. Abramovitch R A 1973 In Organic Reactive Intermediates S P McManus (Ed.) (New York: Academic Press) p.127

  3. Lwowski W 1984 In Azides and Nitrenes (New York: Academic Press)

  4. Lwowski W 1984 In Azides and Nitrenes: Reactivity and Utility E F V Scriven (Ed.) (Orlando: Academic Press) p. 205

  5. Moss R A, Platz M S, Jones Jr. M 2004 (Eds.) Reactive Intermediate Chemistry (New York: John Wiley)

  6. Platz M S 2005 In Reactive Intermediate Chemistry (Hoboken: John Wiley)

  7. Scriven E F V and Turnbull C K 1988 Chem. Rev. 88 297

    Article  CAS  Google Scholar 

  8. Jain S L and Sain B 2003 Tetrahedron Lett. 44 575

    Article  CAS  Google Scholar 

  9. Ando T, Kano D, Minakata S, Ryu I and Komatsu M 1998 Tetrahedron 54 1348

    Article  Google Scholar 

  10. Vyas R, Chanda B M and Bedekar A V 1998 Tetrahedron Lett. 39 4715

    Article  CAS  Google Scholar 

  11. Vyas R, Chanda B M, Belhekar A A, Patel D R, Ram R N and Bedekar A V 2000 J. Mol. Catal. 160 237

    Article  CAS  Google Scholar 

  12. Chanda B M, Vyas R and Bedekar A V 2001 J. Org. Chem. 66 30

    Article  CAS  Google Scholar 

  13. Oliva C G, Jagerovic N, Goya P, Alkorta I, Elguero J, Cuberes R and Dordalb A 2010 ARKIVOC 2 127

    Google Scholar 

  14. Wirth T 2005 Angew. Chem. Int. Ed. 44 3656

    Article  CAS  Google Scholar 

  15. Evans D A, Faul M M and Bilodeau M T 1991 J. Org. Chem. 56 6744

    Article  CAS  Google Scholar 

  16. Evans D A, Faul M M and Bilodeau M T 1994 J. Am. Chem. Soc. 116 2742

    Article  CAS  Google Scholar 

  17. Prato M, Chan Li Q, Wudl F and Lucchini V 1993 J. Am. Chem. Soc. 115 1148

    Article  CAS  Google Scholar 

  18. Bellavia-Lund C and Wudl F 1997 J. Am. Chem. Soc. 119 943

    Article  CAS  Google Scholar 

  19. Averdung J, Luftmann H, Mattay J, Claus K and Abraham, W 1995 Tetrahedron Lett. 36 2957

    Article  CAS  Google Scholar 

  20. Cases M, Duran M, Mestres J, Martın N and Sola M 2001 J. Org. Chem. 66 433

    Article  CAS  Google Scholar 

  21. Labbe G 1969 Chem. Rev. 69 345

    Article  CAS  Google Scholar 

  22. Abramovitch R A and Knaus N 1975 J. Org. Chem. 40 883

    Article  CAS  Google Scholar 

  23. Hayashi Y and Swern D 1973 J. Am. Chem. Soc. 95 5205

    Article  CAS  Google Scholar 

  24. Konars R S, Matsumoto S and Darwent B D 1971 Trans. Faraday. Soc. 67 1698

    Article  Google Scholar 

  25. Eibler E and Sauer J 1974 Tetrahedron Lett. 38 2569

    Article  Google Scholar 

  26. Inagaki M, Shingaki T and Nagai T 1982 Chem. Lett. 11 9

    Article  Google Scholar 

  27. Lewis F D and Saunders W H 1968 J. Am. Chem. Soc. 104 3828

    Article  Google Scholar 

  28. Burdzinski G, Hackett J C, Wang J, Gustafson T L, Hadad C M and Platz M S 2006 J. Am. Chem. Soc. 128 3402

    Google Scholar 

  29. Richardson W C and Setser D W 1969 Can. J. Chem. 47 2725

    Article  CAS  Google Scholar 

  30. Kajimoto O, Yamamoto T and Fueno T 1979 J. Phy. Chem. 83 429

    Article  CAS  Google Scholar 

  31. Bock H and Dammel R 1988 J. Am. Chem. Soc. 110 5261

    Article  CAS  Google Scholar 

  32. O’Dell M S and Darwent B D 1970 Can. J. Chem. 48 1140

    Article  Google Scholar 

  33. Alexander M H, Dagdigian P J and Werner H J 1991 Chem. Soc. 91 319

    CAS  Google Scholar 

  34. Nguyen M T and Sengupta D 1999 J. Am. Chem. Soc. 100 6499

    Google Scholar 

  35. Arenas J F, Marcos J I, Otero J C and Galvez A S 1999 J. Chem. Phys. 111 551

    Article  CAS  Google Scholar 

  36. Arenas J F, Otero J C, Sanchezgalvez A, Soto J and Viruela P 1998 J. Phys. Chem. 102 1146

    Article  CAS  Google Scholar 

  37. Arenas J F, Marcos J I, López-Tocón I, Otero J C and Soto J 2000 J. Chem. Phys. 113 2282

    Article  CAS  Google Scholar 

  38. Arenas J F, Marcos J I, Otero J C, Tocon I L and Soto J 2001 Int. J. Quantum Chem. 84 241

    Article  CAS  Google Scholar 

  39. Rafie H, Eittah A, Mohamed A A and Alomar A M 2006 Int. J. Quantum Chem. 106 863

    Article  Google Scholar 

  40. Luis A R, Xiaoqing Z, Sonia E U, Helmut B, Helge W and Carlos O D V 2012 J. Org. Chem. 77 6456

    Article  Google Scholar 

  41. Darío J R D, Margarida S M and Joaquim C G E d. S 2014 J. Phys. Chem. A 118 5038

    Article  Google Scholar 

  42. Abramovitch R A, Challand S R and Yamada Y 1975 J. Org. Chem. 40 1541

    Article  CAS  Google Scholar 

  43. Indranirekha S, Bishwapran K and Prodeep P 2011 Chem. Commun. 47 2967

    Article  Google Scholar 

  44. Horner L and Christmann A 1963 Angew. Chem. Int. Ed. Engl. 2 599

    Article  Google Scholar 

  45. Tisue G T, Linke S and Lwowski W 1967 J. Am. Chem. Soc. 89 6303

    Article  CAS  Google Scholar 

  46. Isomura K, Ayabe G I, Hatano S and Taniguchi H 1980 J. Chem. Soc. Chem. Comm.

  47. Anastassiou A G 1967 J. Am. Chem. Soc. 89 3184

    Article  CAS  Google Scholar 

  48. McConaghy J S and Lwowski W 1967 J. Am. Chem. Soc. 89 2357

    Article  CAS  Google Scholar 

  49. Lwowski W and Maricich J T 1965 J. Am. Chem. Soc. 87 3630

    Article  CAS  Google Scholar 

  50. Cornell D W, Berry R S and Lwowski W 1966 J. Am. Chem. Soc. 88 544

    Article  CAS  Google Scholar 

  51. Lwowski W and Mattingly T W 1965 J. Am. Chem. Soc. 87 1947

    Article  CAS  Google Scholar 

  52. Xiaoqing Z, Helmut B, Helge W, Patrik N, Dirk G and Wolfram S 2015 J. Phys. Chem. A 119 2281

    Article  Google Scholar 

  53. Gritsan N P, Platz M S and Borden W T 2005 Mol. Supramol. Photochem. 13 235

    Article  CAS  Google Scholar 

  54. Fueno T, Bona-Kouteckji V and Kouteckji J 1983 J. Am. Chem. Soc. 105 5549

    Article  Google Scholar 

  55. Haines W J and Czismadia I G 1973 Theor. Chim. Acta 31 233

    Article  Google Scholar 

  56. Yarkony D R, Schaefer H F and Rothenberg 1974 J. Am. Chem. Soc. 96 5974

    Article  CAS  Google Scholar 

  57. Demuynck J, Fox D J, Yamaguchi Y and Schaefer H F 1980 J. Am. Chem. Soc. 102 6204

    Article  CAS  Google Scholar 

  58. Richards C, Meredith C, Kim, Quelch G E and Schaefer H F 1994 J. Chem. Phys. 100 481

    Article  CAS  Google Scholar 

  59. Kemnitz C R, Ellison G B, Karney W L and Borden W T 2000 J. Am. Chem. Soc. 122 1098

    Article  CAS  Google Scholar 

  60. Alewood P F, Kazmaier P M and Rauk A 1973 J. Am. Chem. Soc. 95 5466

    Article  CAS  Google Scholar 

  61. Pritchina E A, Gritsan N P and Bally T 2005 Russ. Chem. Bull., Int. Ed. 54 1

    Article  Google Scholar 

  62. Liu J, Mandel S, Hadad C M and Platz M S 2004 J. Org. Chem. 69 8583

    Article  CAS  Google Scholar 

  63. Hammond G S 1955 J. Am. Chem. Soc. 77 334

    Article  CAS  Google Scholar 

  64. Becke A D 1993 J. Chem. Phys. 98 1372

    Article  CAS  Google Scholar 

  65. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  66. Scott A P and Radom L 1996 J. Phy. Chem. 100 16502

    Article  CAS  Google Scholar 

  67. Merrick J P, Moran D and Radom L 2007 J. Phys. Chem. A 111 11683

    Article  CAS  Google Scholar 

  68. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski

  69. Geiseler V G and König W 1964 Z. Phys. Chem. (Leipzig) 227 81

    CAS  Google Scholar 

  70. Gritsan N P and Platz M S 2006 Chem. Rev. 106 3844

    Article  CAS  Google Scholar 

  71. Dkhar P G S and Lyngdoh R H D 2005 J. Mol. Struct. (THEOCHEM) 732 161

    Article  CAS  Google Scholar 

  72. Kim S J, Hamilton T P and Schaefer H F 1992 J. Am. Chem. Soc. 114 5349

    Article  CAS  Google Scholar 

  73. Zaslonko I S, Kogarko S M and Mozzhukin E V 1976 Combust. Explos. Shock Waves 12 2

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Council of Scientific and Industrial Research, Govt. of India, for computational facilities received through a sponsored research project. S.P.D. thanks the University Grants Commission, New Delhi, for financial assistance through the UGC Research Fellowship for Meritorious Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H DUNCAN LYNGDOH.

Additional information

Supplementary Information

Optimized geometries (in Cartesian coordinates) of the molecules studied here are given in the Supplementary Information which is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 223 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DEVI, S.P., SALAM, T. & DUNCAN LYNGDOH, R.H. Uncatalyzed thermal gas phase aziridination of alkenes by organic azides. Part I: Mechanisms with discrete nitrene species. J Chem Sci 128, 681–693 (2016). https://doi.org/10.1007/s12039-016-1073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1073-5

Keywords

Navigation