Skip to main content
Log in

Preparation, characterization and photocatalytic studies of Cu2+, Sn2+ and N3− substituted K5Sb5P2O20

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Potassium antimony phosphates (K-Sb-P-O) exhibit different structural networks and therefore they were studied as photocatalysts in the present investigation. K5Sb5P2O20 was prepared by solid state method. Metal ions (Cu2+ and Sn2+), and non-metal anion, N 3−, were substituted into the K5Sb5P2O20 for possible enhancement of photocatalytic activity. The precursor and substituted compounds were characterized by powder X-ray diffraction, FT-IR, SEM-EDS and UV-Vis diffuse reflectance spectra. Nitrogen substitution into K5Sb5P2O20 lattice was studied by O-N-H and XPS measurements. The photocatalytic activity of all the compounds was studied by degradation of methylene blue and methyl violet. The ion-substituted K5Sb5P2O20 have shown higher photocatalytic activity against both the dyes. The role of reactive intermediate species produced in the photocatalytic reaction was studied using their appropriate scavengers.

The red shift observed in the UV-Vis diffuse reflectance spectra of ion (Cu2+, Sn2+ and N3- ) substituted Potassium antimony phosphate (K5Sb5P2O20) indicate the mixing of Cu 3d, Sn 5s and N 2p orbitals with valence band O 2p orbital, which form (Cu 3d + O 2p), (Sn 5s + O 2p) and (N 2p + O 2p) hybrid orbitals, respectively. Higher photocatalytic activity was observed in the ion substituted materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Piffard Y Lachgar A and Tournoux M 1985 Mater. Res. Bull. 20 715

    Article  Google Scholar 

  2. Piffard Y, Lachgar A and Tournoux M 1985 J. Solid State Chem. 58 253

    Article  CAS  Google Scholar 

  3. Piffard Y, Oyetola S, Courant S and Lachgar A 1985 J. Solid State Chem. 60 209

    Article  CAS  Google Scholar 

  4. Piffard Y, Lachgar A and Tournoux M 1986 Mater. Res. Bull. 21 1231

    Article  CAS  Google Scholar 

  5. Griffith C S, Luca V, Cochrane J and Hanna J V 2008 Micropor. Mesopor. Mat. 111 387

    Article  CAS  Google Scholar 

  6. Decaillon J G, Andres Y, Abbe J C and Tournoux M 1998 Solid State Ionics 112 143

    Article  CAS  Google Scholar 

  7. Wang E and Greenblatt M 1991 Chem. Mater. 3 703

    Article  CAS  Google Scholar 

  8. Wang B and Greenblatt M 1992 Chem. Mater. 4 657

    Article  CAS  Google Scholar 

  9. Wang E and Greenblatt M 1991 Chem. Mater. 3 703

    Article  CAS  Google Scholar 

  10. Wang E and Greenblatt M 1991 Chem. Mater. 3 542

    Article  CAS  Google Scholar 

  11. Natarajan S and Thomas J M 1992 Catal. Today 12 433

    Article  CAS  Google Scholar 

  12. Kumar V N, Ravi G, Reddy J R, Suresh P, Muniratnam N R, Prasad G and Vithal M 2014 J. Am. Ceram. Soc. 97 1829

    Article  Google Scholar 

  13. Reddy J R, Ravi G, Kumar V N, Radha V Someshwar P, Sreedhar B and Vithal M 2013 Z. Anorg. Allg. Chem. 639 794

    Article  CAS  Google Scholar 

  14. Reddy J R, Ravinder G, Kumar V N, Shrujana P, Radha V and Vithal M 2015 J. Alloy Compd. 618 815

    Article  Google Scholar 

  15. Husson E, Genet F, Lachgar A and Piffard Y 1998 J. Solid State Chem. 75 305

    Article  Google Scholar 

  16. Radha V, Ramaswamy K, Ravi G, Munirathnam N R and Vithal M 2015 Z. Anorg. Allg. Chem. 641 935

    Article  Google Scholar 

  17. Reddy J R, Kumar V N, Suresh P, Ravi G Ravinder G and Vithal M 2014 J. Chem. Technol. Biot. 89 1833

    Article  CAS  Google Scholar 

  18. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M and Ye J 2012 Adv. Mater. 24 229

    Article  CAS  Google Scholar 

  19. He Y, Zhu Y and Wu N 2004 J. Solid State Chem. 177 3868

    Article  CAS  Google Scholar 

  20. Qiu X and Burda C 2007 Chem. Phys. 339 1

    Article  CAS  Google Scholar 

  21. Fei Z, Zheng J, Xiaoqin Q, Yongxiang Z, Luyun J, Jinfang Z, Tiancun X and Peter P E 2012 Chem. Commun. 48 8514

    Article  Google Scholar 

  22. Yan W, Caixia F, Min Z, Jianjun Y and Zhijun Z 2010 Appl. Catal. B-Environ. 100 84

    Article  Google Scholar 

  23. Xiang Q, Yu J and Wong P K 2011 J. Colloid Interf. Sci. 357 163

    Article  CAS  Google Scholar 

  24. Ishibashi K, Fujishima A, Watanabe T and Hashimoto K 2000 J. Photoch. Photobio. A 134 139

    Article  CAS  Google Scholar 

  25. Zhang N, Zhang Y, Yang M Q, Tang Z R and Xu Y J 2013 J. Catal. 299 210

    Article  CAS  Google Scholar 

  26. Xu Y S and Zhang W D 2013 J. Chem. Soc. Dalton 42 1094

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Department of Science & Technology (DST), New Delhi under FIST scheme and UGC, New Delhi under UPE programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M VITHAL.

Additional information

Supplementary Information (SI)

Figures S1 to S1 and tables S1 to S6 are available in electronic Supplementary Information available at http://www.ias.ac.in/Journals/Journal_of_Chemical_Sciences/.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 626 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

REDDY, C.S., K, S., REDDY, J.R. et al. Preparation, characterization and photocatalytic studies of Cu2+, Sn2+ and N3− substituted K5Sb5P2O20 . J Chem Sci 128, 663–670 (2016). https://doi.org/10.1007/s12039-016-1041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1041-0

Keywords

Navigation