Skip to main content
Log in

Structural and optical properties of zinc titanates synthesized by precipitation method

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Synthesis of zinc titanates was carried out using a simple precipitation method followed by calcination at different temperatures to obtain different phases of the material. The phase transition characteristics, presence of functional groups, structural aspects and optical bandgaps with respect to calcination temperature were studied by thermal analysis, EDAX, FT-IR, powder XRD, Raman and UV-Vis spectroscopy respectively. The compound on heat treatment at 100C for 24 h showed broadened peaks in XRD. With increasing temperature of calcination, the compound appeared to turn to crystalline phase and cubic ZnTiO3 phase was observed at 600C. Partial phase transformation of cubic phase ZnTiO3 into hexagonal ilmenite type ZnTiO3 was observed in the temperature range 700C to 900C. At 1000C both cubic and hexagonal ilmenite phases decomposed into cubic phase Zn2TiO 4 and rutile TiO2. FT-IR showed M-O bonds in the range of 400 cm −1 to 700 cm −1. Raman spectra of cubic defect spinel ZnTiO3 and cubic inverse spinel Zn2TiO4 were found to be similar. The optical bandgap calculated using diffuse reflectance spectra was found to be in the range of 3.59 to 3.84 eV depending on calcination temperature.

Zinc titanates were synthesized by a simple precipitation reaction and characterized using thermal analysis, EDAX, powder XRD, FT-IR, Raman and DRS studies. Calcination temperature influences phase transition and optical properties. Raman spectra of cubic ZnTiO3 and cubic Zn2TiO4 are similar due to similarity in their crystal structure and lattice parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pineda M, Fierro J L G, Palacios J M, Cilleruelo C, Garcia E and Ibarra J V 1997 Appl. Surf. Sci. 119 1

  2. Pal N, Paul M and Bhaumik A 2011 Appl. Catal., A. 393 153

  3. Wu S P, Luo J H and Cao S X 2010 J. Alloys Compd. 502 147

  4. Yadav B C, Yadav A, Singh S and Singh K 2013 Sens. Actuators B. 177 605

  5. Obayashi H, Sakurai Y and Gejo T 1976 J. Solid State Chem. 17 299

  6. Wang N, Li X, Wang Y, Hou Y, Zou X and Chen G 2008 Mater. Lett. 62 3691

  7. Darzi S J and Mahjoub A R 2009 J. Alloys Compd. 486 805

  8. McCord A T and Saunder H F 1945 U.S Patent 2379019

  9. Steinike U and Wallis B 1997 Cryst. Res. Technol. 32 187

  10. Jain P K, Kumar D, Kumar A and Kaur D 2010 Opto. Mater. Adv. Mater. 4 299

  11. Manik S K and Pradhan S K 2006 Physica E 33 69

  12. Mrazek J, Spanhel L, Chadyron G and Matejec V 2010 J. Phys. Chem. C. 114 2843

  13. Hou L, Hou Y D, Zhu M K, Tang J, Liu J B, Wang H and Yan H 2005 Mater. Lett. 59 197

  14. Nolan N T, Seery M K and Pillai S C 2011 Chem. Mater. 23 1496

  15. Chai Y L, Chang Y S, Chen G J and Hsiao Y J 2008 Mater. Res. Bull. 43 1066

  16. Wang C L, Hwang W S, Chang K M, Ko H H, Hisn C S, Huang H H and Wang M C 2011 Int. J. Mol. Sci. 12 935

  17. Lee Y C and Chen P S 2013 Thin Solid Films. 531 222

  18. Ramirez E G, Chaparro M M and Angel O Z 2010 Appl. Phys. A. 108 291

  19. Phani A R, Passacantando M and Santucci S 2007 J. Phys. Chem. Solids. 68 317

  20. Liu X 2012 Mater. Lett. 80 69

  21. Liu Z, Zhou D, Gong S and Li H 2009 J. Alloys Compd. 475 840

  22. Kim H T, Kim S H, Nahm S and Byun J D 1999 J. Am. Ceram. Soc. 82 3043

  23. Cassaignon S, Koelsch M and Jolivet J P 2007 J. Phys. Chem. Solids. 68 695

  24. Svehla G 1979 In Vogel’s Text book of macro and semimicro Qualitative Inorganic Analysis 5 th edition (London and New York: Longman) p 272 and 532

  25. Zhong S L, Xu R, Wang L, Li Y and Zhang L F 2011 Mater. Res. Bull. 46 2385

  26. Chamberland B L and Silverman S 1979 J. Less. Common. Met. 65 P41

  27. Yuan Z, Huang F, Sun J and Zhou Y 2002 Chem. Lett. 31 408

  28. Sharma Y, Sharma N, Rao G V S and Chowdari B V R 2009 J. Power Sources 192 627

  29. Lu W and Schmidt H 2005 J. Eur. Ceram. Soc. 25 919

  30. Yang J and Swisher J H 1996 Mater. Charact. 37 153

  31. Wang C T and Lin J C2008 Appl. Surf. Sci. 254 4500

  32. Yamaguchi O, Morimi M, Kawabata H and Shimizu K 1987 J. Am. Ceram. Soc. 70 C-97

  33. Li G, Li L, Goates J B and Woodfield B F 2009 J. Am. Chem. Soc. 127 8659

  34. Zheng M, Xing X., Deng J, Li L, Zhao J, Qiao L and Fang C 2007 J. Alloys Compd. 456 353

  35. Wang L, Kang H, Xue D and Liu C 2009 J. Cryst. Growth. 311 611

  36. Jeong T S, Han M S and Youn C J 2004 J. Appl. Phys. 96 175

  37. Wang Z, Saxena S K and Zha C S 2002 Phys. Review B. 66 024103

  38. Krylova G, Brioude A, Girard S A, Mrazek J and Spanhel L 2010 Phys. Chem. Chem. Phys. 12 15101

  39. Huo Y and Hu Y H 2012 Ind. Eng. Chem. Res. 51 1083

  40. Shi L and Lin H 2011 Langmuir 27 3977

Download references

Acknowledgments

The authors thank VIT-SIF for thermal analysis, powder XRD, FT-IR and DRS, and Dr. R.P. Vijayalakshmi, Sri Venkateswara University, Tirupati for Raman spectral data. One of the authors, B. Lokesh thanks VIT University for providing financial support to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MADHUSUDHANA RAO NASINA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BUDIGI, L., NASINA, M.R., SHAIK, K. et al. Structural and optical properties of zinc titanates synthesized by precipitation method. J Chem Sci 127, 509–518 (2015). https://doi.org/10.1007/s12039-015-0802-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0802-5

Keywords

Navigation