Skip to main content

Advertisement

Log in

Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Metastasis-associated protein 1 (MTA1) is an emerging transcriptional co-regulator and was found to be aberrantly expressed in different types of cancers. MTA1 has been reported to regulate multiple cancer-related signalling pathways leading to tumour progression and metastasis. Recently, MTA1 was also implicated in cancer metabolism, where it was found to regulate the ‘Warburg effect’ to drive breast cancer cell invasion. Overall, the functional dynamism of MTA1 can be attributed to its dual co-regulatory effects in regulating a diverse array of target genes involved in cell proliferation, DNA damage repair, angiogenesis, invasion, migration, metastasis, and metabolism in different types of cancers. In this review, we have attempted to provide a brief summary of MTA1 as a modulator of the hallmarks of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aubrey BJ, Kelly GL, Janic A, Herold MJ and Strasser A 2018 How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25 104–113

    Article  CAS  PubMed  Google Scholar 

  • Balasenthil S, Gururaj AE, Talukder AH, et al. 2007 Identification of Pax5 as a target of MTA1 in B-cell lymphomas. Cancer Res. 67 7132–7138

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA 2005 Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 6 611–622

    Article  CAS  PubMed  Google Scholar 

  • Bui-Nguyen TM, Pakala SB, Sirigiri RD, et al. 2010 NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. Oncogene 29 1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Geutjes E-J, de Lint K, et al. 2014 The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene 33 2157–2168

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, George JT, Tripathi S, Levine H and Jolly MK 2020 Comparative study of transcriptomics-based scoring metrics for the epithelial-hybrid-mesenchymal spectrum. Front. Bioeng. Biotechnol. 8 220

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng D, Zhao Y, Wang S, et al. 2017 Repression of telomerase gene promoter requires human-specific genomic context and is mediated by multiple HDAC1-containing co-repressor complexes. FASEB J. 31 1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Chen J-K, Wang W-C, Zang L, et al. T 2016 Repression of a chromatin modifier aggravates lipopolysaccharide-induced acute lung injury in mouse. Biochem. Biophys. Res. Commun. 471 515–521

  • Chen W-H, Cai M-Y, Zhang J-X, et al. 2018 FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1. Oncogene 37 6243–6258

    Article  CAS  PubMed  Google Scholar 

  • Conomos D, Reddel RR and Pickett HA 2014 NuRD-ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination. Nat. Struct. Mol. Biol. 21 760–770

    Article  CAS  PubMed  Google Scholar 

  • Cramer P 2019 Organization and regulation of gene transcription. Nature 573 45–54

    Article  CAS  PubMed  Google Scholar 

  • Dannenmann C, Shabani N, Friese K, et al. 2008 The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biol. Ther. 7 1460–1467

    Article  CAS  PubMed  Google Scholar 

  • Dege C and Hagman J 2014 Mi-2/NuRD chromatin remodeling complexes regulate B and T-lymphocyte development and function. Immunol. Rev. 261 126–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehennaut V, Loison I, Dubuissez M, et al. 2013 DNA double-strand breaks lead to activation of hypermethylated in cancer 1 (HIC1) by SUMOylation to regulate DNA repair. J. Biol. Chem. 288 10254–10264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X, Du L, Wang C, et al. 2013 Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. World J. Surg. 37 792–798

    Article  PubMed  Google Scholar 

  • Deng L, Tang J, Yang H, et al. 2017 MTA1 modulated by miR-30e contributes to epithelial-to-mesenchymal transition in hepatocellular carcinoma through an ErbB2-dependent pathway. Oncogene 36 3976–3985

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Kumar A, Li K, Tzivion G and Levenson AS 2015 Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochim. Biophys. Acta 1853 265–275

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Tu R, Liu H and Qing G 2020 Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduct. Target Ther. 5 124

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng X, Zhang Q, Xia S, et al. 2014 MTA1 overexpression induces cisplatin resistance in nasopharyngeal carcinoma by promoting cancer stem cells properties. Mol. Cells 37 699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganju A, Chauhan SC, Hafeez BB, et al. 2018 Protein kinase D1 regulates subcellular localization and metastatic function of metastasis-associated protein 1. Br. J. Cancer 118 587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanta KS, Pakala SB, Reddy SDN, et al. 2011 MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. J. Biol. Chem. 286 7132–7138

    Article  CAS  PubMed  Google Scholar 

  • Goody D, Gupta SK, Engelmann D, et al. 2019 Drug repositioning inferred from E2F1-coregulator interactions studies for the prevention and treatment of metastatic cancers. Theranostics 9 1490–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guddeti RK, Bali P, Karyala P and Pakala SB 2019 MTA1 co-regulator regulates LDHA expression and function in breast cancer. Biochem. Biophys. Res. Commun. 520 54–59

    Article  CAS  PubMed  Google Scholar 

  • Gumbiner BM and Kim N-G 2014 The Hippo-YAP signaling pathway and contact inhibition of growth. J. Cell Sci. 127 709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo N, Shen G, Zhang Y, et al. 2019 Interleukin-17 promotes migration and invasion of human cancer cells through upregulation of MTA1 expression. Front. Oncol. 9 546

    Article  PubMed  PubMed Central  Google Scholar 

  • Gururaj AE, Singh RR, Rayala SK, et al. 2006 MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc. Natl. Acad. Sci. USA 103 6670–6675

    Article  CAS  Google Scholar 

  • Hamanaka N, Nakanishi Y, Mizuno T, et al. 2019 YES1 Is a targetable oncogene in cancers harboring gene amplification. Cancer Res. 79 5734–5745

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D and Weinberg RA 2011 Hallmarks of cancer: the next generation. Cell 144 646–674

    Article  CAS  PubMed  Google Scholar 

  • Hannafon BN, Gin AL, Xu Y-F, et al. 2019 Metastasis-associated protein 1 (MTA1) is transferred by exosomes and contributes to the regulation of hypoxia and estrogen signaling in breast cancer cells. Cell Commun. Signal. 17 13

    Article  PubMed  PubMed Central  Google Scholar 

  • He X, Zhou C, Zheng L and Xiong Z 2014 Overexpression of MTA1 promotes invasiveness and metastasis of ovarian cancer cells. Ir. J. Med. Sci. 183 433–438

    Article  CAS  PubMed  Google Scholar 

  • He L, Yuan L, Yu W, et al. 2020 A regulation loop between YAP and NR4A1 balances cell proliferation and apoptosis. Cell Rep. 33 108284

  • Hou Y, Liu W, Yi X, et al. 2020 PHF20L1 as a H3K27me2 reader coordinates with transcriptional repressors to promote breast tumorigenesis. Sci. Adv. 6 eaaz0356

  • Hsieh AC, Liu Y, Edlind MP, et al. 2012 The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485 55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Zhang J, Huo M, et al. 2021 CUL4B promotes breast carcinogenesis by coordinating with transcriptional repressor complexes in response to hypoxia signaling pathway. Adv. Sci. 8 2001515

    Article  CAS  Google Scholar 

  • Ishikawa M, Osaki M, Yamagishi M, et al. 2019 Correlation of two distinct metastasis-associated proteins, MTA1 and S100A4, in angiogenesis for promoting tumor growth. Oncogene 38 4715–4728

    Article  CAS  PubMed  Google Scholar 

  • Jang K-S, Paik SS, Chung H, Oh Y-H and Kong G 2006 MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Sci. 97 374–379

    Article  CAS  PubMed  Google Scholar 

  • Jia Q-P, Yan C-Y, Zheng X-R, et al. 2019 Upregulation of MTA1 expression by human papillomavirus infection promotes CDDP resistance in cervical cancer cells via modulation of NF-κB/APOBEC3B cascade. Cancer Chemother. Pharmacol. 83 625–637

    Article  CAS  PubMed  Google Scholar 

  • Jolly MK and Celià-Terrassa T 2019 Dynamics of phenotypic heterogeneity associated with EMT and stemness during cancer progression. J. Clin. Med. Res. 8 1542

    CAS  Google Scholar 

  • Jolly MK, Tripathi SC, Jia D, et al. 2016 Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7 27067–27084

    Article  PubMed  PubMed Central  Google Scholar 

  • Kai L, Samuel SK and Levenson AS 2010 Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int. J. Cancer 126 1538–1548

    CAS  PubMed  Google Scholar 

  • Kai L, Wang J, Ivanovic M, et al. 2011 Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate 71 268–280

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Kim T, Johnson RL and Lim D-S 2015 Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ. Cell Rep. 11 270–282

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Xu X, Yan Y, et al. 2014 Estrogen regulates the tumour suppressor MiRNA-30c and its target gene, MTA-1, in endometrial cancer. PLoS One 9 e90810

  • Kong X, Xu X, Zhou L, et al. 2020 MTA1, a target of resveratrol, promotes epithelial-mesenchymal transition of endometriosis via ZEB2. Mol. Ther. Methods Clin. Dev. 19 295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kröger C, Afeyan A, Mraz J, et al. 2019 Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc. Natl. Acad. Sci. USA 116 7353–7362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Dhar S, Campanelli G, et al. 2018 MTA1 drives malignant progression and bone metastasis in prostate cancer. Mol. Oncol. 12 1596–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapeyre-Prost A, Terme M, Pernot S, et al. 2017 Immunomodulatory activity of VEGF in cancer. Int. Rev. Cell Mol. Biol. 330 295–342

    Article  CAS  PubMed  Google Scholar 

  • Lee M-H, Na H, Kim E-J, Lee H-W and Lee M-O 2012a Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1. Oncogene 31 5099–5107

    Article  CAS  PubMed  Google Scholar 

  • Lee M-H, Na H, Na T-Y, Shin Y-K, Seong J-K and Lee M-O 2012b Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis 1 e25

  • Lee J-Y, Park J-H, Choi H-J, et al. 2017 LSD1 demethylates HIF1α to inhibit hydroxylation and ubiquitin-mediated degradation in tumor angiogenesis. Oncogene 36 5512–5521

    Article  CAS  PubMed  Google Scholar 

  • Lee M-H, Koh D, Na H, et al. 2018 MTA1 is a novel regulator of autophagy that induces tamoxifen resistance in breast cancer cells. Autophagy 14 812–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Dong Y, Zhao J and Li W 2013 YES1 activation elicited by heat stress is anti-apoptotic in mouse pachytene spermatocytes. Biol. Reprod. 89 131

    PubMed  Google Scholar 

  • Li D-Q, Ohshiro K, Reddy SDN, et al. 2009 E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proc. Natl. Acad. Sci. USA 106 17493–17498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D-Q, Ohshiro K, Khan MN and Kumar R 2010a Requirement of MTA1 in ATR-mediated DNA damage checkpoint function. J. Biol. Chem. 285 19802–19812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D-Q, Pakala SB, Reddy SDN, et al. 2010b Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. J. Biol. Chem. 285 10044–10052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D-Q, Pakala SB, Reddy SDN, et al. 2011a Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis. Proc. Natl. Acad. Sci. USA 108 8791–8796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wu Z-Q, Zhao J, et al. 2011b Transient protection from heat-stress induced apoptotic stimulation by metastasis-associated protein 1 in pachytene spermatocytes. PLoS One 6 e26013

  • Li D-Q, Pakala SB, Nair SS, Eswaran J and Kumar R 2012 Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res. 72 387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Tian H, Yue W, et al. 2013 Down-regulation of MTA1 protein leads to the inhibition of migration, invasion, and angiogenesis of non-small-cell lung cancer cell line. Acta Biochim. Biophys. Sin. 45 115–122

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu J, Xue H, et al. 2020a A TGF-β-MTA1-SOX4-EZH2 signaling axis drives epithelial-mesenchymal transition in tumor metastasis. Oncogene 39 2125–2139

    Article  CAS  PubMed  Google Scholar 

  • Li Y-H, Zhong M, Zang H-L and Tian X-F 2020b MTA1 Promotes hepatocellular carcinoma progression by downregulation of DNA-PK-Mediated H1.2 phosphorylation. Front. Oncol. 10 567

  • Lin Z, Wan X, Jiang R, et al. 2014 Epstein-Barr virus-encoded latent membrane protein 2A promotes the epithelial-mesenchymal transition in nasopharyngeal carcinoma via metastatic tumor antigen 1 and mechanistic target of rapamycin signaling induction. J. Virol. 88 11872–11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Xu D, Wang H, et al. 2014 The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget 5 5153–5164

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang H, Ma F, et al. 2015 MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in-vivo. Mol. Oncol. 9 218–235

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xia J, Zhang Y, et al. 2017 Associations between the expression of MTA1 and VEGF-C in esophageal squamous cell carcinoma with lymph angiogenesis and lymph node metastasis. Oncol. Lett. 14 3275–3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Qiao J, Hu J, et al. 2020a Leptin promotes endothelial dysfunction in chronic kidney disease by modulating the MTA1-mediated WNT/β-catenin pathway. Mol. Cell. Biochem. 473 155–166

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li C, Wang J, et al. 2020b Chromatin modifier MTA1 regulates mitotic transition and tumorigenesis by orchestrating mitotic mRNA processing. Nat. Commun. 11 4455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Qiao Y, Ting X and Si W 2020c Isocitrate dehydrogenase 3A, a rate-limiting enzyme of the TCA cycle, promotes hepatocellular carcinoma migration and invasion through regulation of MTA1, a core component of the NuRD complex. Am. J. Cancer Res. 10 3212–3229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Wang J, Liu L, et al. 2017 Curcumin increases the sensitivity of Paclitaxel-resistant NSCLC cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction. Tumour Biol. 39 1010428317698353

    PubMed  Google Scholar 

  • Lu B, Lian R, Wu Z, et al. 2018 MTA1 promotes viability and motility in nasopharyngeal carcinoma by modulating IQGAP1 expression. J. Cell. Biochem. 119 3864–3872

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Su F, Chen D, Shiloh A and Gu W 2000 Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408 377–381

    Article  CAS  PubMed  Google Scholar 

  • Lv C, Huang Y, Lei Q, et al. 2020 Elevated MTA1 induced the migration and invasion of renal cell carcinoma through the NF-κB pathway. BMC Urol. 20 160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma K, Fan Y, Dong X, et al. 2017 MTA1 promotes epithelial to mesenchymal transition and metastasis in non-small-cell lung cancer. Oncotarget 8 38825–38840

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahoney MG, Simpson A, Jost M, et al. 2002 Metastasis-associated protein (MTA) 1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene 21 2161–2170

    Article  CAS  PubMed  Google Scholar 

  • Marzook H, Deivendran S, George B, et al. 2017 Cytoplasmic translocation of MTA1 co-regulator promotes de-repression of SGK1 transcription in hypoxic cancer cells. Oncogene 36 5263–5273

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar A, Wang R-A, Mishra SK, et al. 2001 Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 co-repressor. Nat. Cell Biol. 3 30–37

    Article  CAS  PubMed  Google Scholar 

  • Molli PR, Singh RR, Lee SW and Kumar R 2008 MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. Oncogene 27 1971–1980

    Article  CAS  PubMed  Google Scholar 

  • Moon H-E, Cheon H, Chun K-H, et al. 2006 Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncol. Rep. 16 929–935

    CAS  PubMed  Google Scholar 

  • Moon H-E, Cheon H and Lee M-S 2007 Metastasis-associated protein 1 inhibits p53-induced apoptosis. Oncol. Rep. 18 1311–1314

    CAS  PubMed  Google Scholar 

  • Nagaraj SRM and Lingaraj SM 2012 MTA1 induced angiogenesis, migration and tumor growth is inhibited by Glycyrrhiza glabra. IOSR J. Pharm. 2 34–43

    Google Scholar 

  • Nagaraj SRM, Shilpa P, Rachaiah K and Salimath BP 2015 Crosstalk between VEGF and MTA1 signaling pathways contribute to aggressiveness of breast carcinoma. Mol. Carcinog. 54 333–350

    Article  CAS  PubMed  Google Scholar 

  • Nair SS, Bommana A, Bethony JM, et al. 2011a The metastasis-associated protein-1 gene encodes a host permissive factor for schistosomiasis, a leading global cause of inflammation and cancer. Hepatology 54 285–295

    Article  CAS  PubMed  Google Scholar 

  • Nair SS, Bommana A, Pakala SB, et al. 2011b Inflammatory response to liver fluke Opisthorchis viverrini in mice depends on host master co-regulator MTA1, a marker for parasite-induced cholangiocarcinoma in humans. Hepatology 54 1388–1397

    Article  CAS  PubMed  Google Scholar 

  • Nair SS, Li D-Q and Kumar R 2013 A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol. Cell 49 704–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan P, Wang T, Li C, et al. 2020 MTA1 promotes tumorigenesis and development of esophageal squamous cell carcinoma via activating the MEK/ERK/p90RSK signaling pathway. Carcinogenesis 41 1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Nicolson GL, Nawa A, Toh Y, et al. 2003 Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin. Exp. Metastasis 20 19–24

    Article  CAS  PubMed  Google Scholar 

  • Ohshiro K, Rayala SK, Wigerup C, et al. 2010 Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Rep. 11 691–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olias P, Etheridge RD, Zhang Y, Holtzman MJ and Sibley LD 2016 Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression. Cell Host Microbe 20 72–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakala SB, Reddy SDN, Bui-Nguyen TM, et al. 2010 MTA1 co-regulator regulates LPS response via MyD88-dependent signaling. J. Biol. Chem. 285 32787–32792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakala SB, Singh K, Reddy SDN, et al. 2011 TGF-β1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene 30 2230–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakala SB, Rayala SK, Wang R-A, et al. 2013 MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. Cancer Res. 73 3761–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin DM 2006 The global health burden of infection-associated cancers in the year 2002 Int. J. Cancer 118 3030–3044

    CAS  Google Scholar 

  • Park JS, Kim EJ, Kwon HJ, et al. 2000 Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem. 275 6764–6769

    Article  CAS  PubMed  Google Scholar 

  • Park SS, Kim JM, Kim DS, Kim IH and Kim SY 2006 Transglutaminase 2 mediates polymer formation of I-kappaBalpha through C-terminal glutamine cluster. J. Biol. Chem. 281 34965–34972

    Article  CAS  PubMed  Google Scholar 

  • Pastushenko I, Brisebarre A, Sifrim A, et al. 2018 Identification of the tumour transition states occurring during EMT. Nature 556 463–468

    Article  CAS  PubMed  Google Scholar 

  • Qian Y-Y, Liu Z-S, Pan D-Y and Li K 2017 Tumoricidal activities of pterostilbene depend upon destabilizing the MTA1-NuRD complex and enhancing P53 acetylation in hepatocellular carcinoma. Exp. Ther. Med. 14 3098–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian W, Cai X, Qian Q, Zhang W and Tian L 2020 Metastasis-associated protein 1 promotes epithelial-mesenchymal transition in idiopathic pulmonary fibrosis by upregulating Snail expression. J. Cell. Mol. Med. 24 5998–6007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy SDN, Pakala SB, Molli PR, et al. 2012 Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. J. Biol. Chem. 287 27843–27850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed SM and Quelle DE 2014 p53 Acetylation: Regulation and consequences. Cancers 7 30–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan D-Y, Li T, Wang Y-N, et al. 2021 FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene 40 5168–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo S, Mishra A, Kaur H, et al. 2021 A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer 3 zcab027

  • Salot S and Gude R 2013 MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. Eur. J. Cancer 49 492–499

    Article  CAS  PubMed  Google Scholar 

  • Sanidas I, Morris R, Fella KA, et al. 2019 A code of mono-phosphorylation modulates the function of RB. Mol. Cell 73 985–1000e6

  • Sen N, Gui B and Kumar R 2014 Role of MTA1 in cancer progression and metastasis. Cancer Metastasis Rev. 33 879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sever R and Brugge JS 2015 Signal transduction in cancer. Cold Spring Harb. Persp. Med. 5 a006098

  • Shen JZ, Qiu Z, Wu Q, et al. 2021 FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell 184 352–369.e23

    Article  CAS  PubMed  Google Scholar 

  • Shimizu-Hirota R, Xiong W, Baxter BT, et al. 2012 MT1-MMP regulates the PI3Kδ·Mi-2/NuRD-dependent control of macrophage immune function. Genes Dev. 26 395–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si W, Huang W, Zheng Y, et al. 2015 Dysfunction of the reciprocal feedback loop between GATA3- and ZEB2-nucleated repression programs contributes to breast cancer metastasis. Cancer Cell 27 822–836

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Zhang H, Wang M, et al. 2013 MTA1 promotes nasopharyngeal carcinoma growth in vitro and in vivo. J. Exp. Clin. Cancer Res. 32 54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talmadge JE and Fidler IJ 2010 AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70 5649–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh Y, Pencil SD and Nicolson GL 1994 A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J. Biol. Chem. 269 22958–22963

    Article  CAS  PubMed  Google Scholar 

  • Tuncay Cagatay S, Cimen I, Savas B and Banerjee S 2013 MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumour Biol. 34 1189–1204

    Article  CAS  PubMed  Google Scholar 

  • Tunçer S, Tunçay Çağatay S, Keşküş AG, et al. 2016 Interplay between 15-lipoxygenase-1 and metastasis-associated antigen 1 in the metastatic potential of colorectal cancer. Cell Prolif. 49 448–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Rechem C, Boulay G, Pinte S, et al. 2010 Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol. Cell. Biol. 30 4045–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S and El-Deiry WS 2003 TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22 8628–8633

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Fan L, Wei J, et al. 2012 Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. PLoS One 7 e46888

  • Wang H, Dong B-W, Zheng Z-H, et al. 2016 Metastasis-associated protein 1 (MTA1) signaling in rheumatoid synovium: Regulation of inflammatory response and cytokine-mediated production of prostaglandin E2 (PGE2). Biochem. Biophys. Res. Commun. 473 442–448

    Article  CAS  PubMed  Google Scholar 

  • Wang H-J, Pochampalli M, Wang L-Y, et al. 2019a KDM8/JMJD5 as a dual co-activator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene 38 17–32

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Li W, Huang H and Wang C 2019b Metastasis-associated 1 (MTA1) gene expression promotes angiogenesis in mouse xenografts from human non-small cell lung cancer (NSCLC) cells. Med. Sci. Monit. 25 484–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng W, Yin J, Zhang Y, Qiu J and Wang X 2014 Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int. J. Oncol. 44 812–818

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Wu Q, Zhang K, et al. 2021 O-GlcNAc modification regulates MTA1 transcriptional activity during breast cancer cell genotoxic adaptation. Biochim. Biophys. Acta Gen. Subj. 1865 129930

  • Xu Z, Zou C, Guo M, et al. 2020 Metastasis-associated protein 1 (MTA1) regulates the catecholamine production homeostasis via transcriptional repression of aromatic l-amino acid decarboxylase (Aadc) in the interstitial cells of Cajal of mouse prostate. Biochem. Biophys. Res. Commun. 528 732–739

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Hu Y, Chen B, et al. 2021 Metastasis-associated gene 1 (MTA1) enhances cisplatin resistance of malignant pleural mesothelioma by ATR-Chk1-mediated DNA repair. Ann. Transl. Med. 9 670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Wang H, Toh Y and Boyd DD 2003 Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. J. Biol. Chem. 278 2309–2316

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Avtanski D, Saxena NK and Sharma D 2012 Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. J. Biol. Chem. 287 8598–8612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C-L, Zheng X-L, Ye K, et al. 2018a MicroRNA-183 acts as a tumor suppressor in human non-small cell lung cancer by down-regulating MTA1. Cell. Physiol. Biochem. 46 93–106

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Sun A-A, Shi Y, Li F and Pickett HA 2018b Structural and functional characterization of the RBBP4–ZNF827 interaction and its role in NuRD recruitment to telomeres. Biochem. J. 475 2667–2679

    Article  CAS  PubMed  Google Scholar 

  • Yang C-Y, Tsao C-H, Hsieh C-C, et al. 2020 Downregulation of Jumonji-C domain-containing protein 5 inhibits proliferation by silibinin in the oral cancer PDTX model. PLoS One 15 e0236101

  • Yen J-H, Lin L-C, Chen M-C, et al. 2015 The metastatic tumor antigen 1-transglutaminase-2 pathway is involved in self-limitation of monosodium urate crystal-induced inflammation by upregulating TGF-β1. Arthritis Res. Ther. 17 65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi H, Ye J, Yang X-M, et al. 2015 High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis. Int. J. Clin. Exp. Pathol. 8 5062–5070

    PubMed  PubMed Central  Google Scholar 

  • Yoo Y-G, Kong G and Lee M-O 2006 Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J. 25 1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo Y-G, Na T-Y, Seo H-W, et al. 2008 Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene 27 3405–3413

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Su Y-S, Zhao J, Wang H and Li W 2013 Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Lett. 587 2542–2551

    Article  CAS  PubMed  Google Scholar 

  • Zang H-L, Ren S-N, Cao H and Tian X-F 2017 The ubiquitin ligase TRIM25 inhibits hepatocellular carcinoma progression by targeting metastasis associated 1 protein. IUBMB Life 69 795–801

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Zhang J-M, Du Y, et al. 2016 Crosstalk between ATF4 and MTA1/HDAC1 promotes osteosarcoma progression. Oncotarget 7 7329–7342

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X-Y, DeSalle LM, Patel JH, et al. 2005 Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc. Natl. Acad. Sci. USA 102 13968–13973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang Q, Zhou Y, et al. 2019 Overexpression of MTA1 inhibits the metastatic ability of ZR-75-30 cells in vitro by promoting MTA2 degradation. Cell Commun. Signal. 17 4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Guo S, Li Y, et al. 2020 Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex-mediated STAT1 downregulation. J. Exp. Med. 217 e20191340

  • Zhu W, Cai M-Y, Tong Z-T, et al. 2012 Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through c-Myc to induce epithelial-mesenchymal transition. Gut 61 562–575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Indian Institute of Science Education and Research (IISER) Tirupati for support. Our sincere apologies to all our colleagues whose works have not been cited in this review as they are too numerous to be cited here. All the figures in this review were created with the help of BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh B Pakala.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported here in this review.

Additional information

Corresponding editor: Shamik Sen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vattem, C., Pakala, S.B. Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer. J Biosci 47, 23 (2022). https://doi.org/10.1007/s12038-022-00263-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00263-w

Keywords

Navigation