Skip to main content

Advertisement

Log in

Nutraceutical and therapeutic potential of Phycocyanobilin for treating Alzheimer’s disease

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative condition provoking the loss of cognitive and memory performances. Despite huge efforts to develop effective AD therapies, there is still no cure for this neurological condition. Here, we review the main biological properties of Phycocyanobilin (PCB), accounting for its potential uses against AD. PCB, given individually or released in vivo from C-Phycocyanin (C-PC), acts as a bioactive-molecule-mediating antioxidant, is anti-inflammatory and has immunomodulatory activities. PCB/C-PC are able to scavenge reactive oxygen and nitrogen species, to counteract lipid peroxidation and to inhibit enzymes such as NADPH oxidase and COX-2. In animal models of multiple sclerosis and ischemic stroke, these compounds induce remyelination as demonstrated by electron microscopy and the expression of genes such as Mal up-regulation of and Lingo-1 down-regulation. These treatments also reduce pro-inflammatory cytokines levels and induce immune suppressive genes. PCB/C-PC protects isolated rat brain mitochondria and inactivate microglia, astrocytes and neuronal apoptosis mediators. Such processes are all involved in the pathogenic cascade of AD, and thus PCB may effectively mitigate the injury in this condition. Furthermore, PCB can be administered safely by oral or parenteral routes and therefore, could be commercially offered as a nutraceutical supplement or as a pharmaceutical drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, et al. Structural conversion of neurotoxic amyloid-β 1–42 oligomers to fibrils. Nat. Struct. Mol. Biol. 2010 561

  • Aksenov M, Aksenova M, Butterfield D, Geddes J and Markesbery W 2001 Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103 373–383

    Article  CAS  PubMed  Google Scholar 

  • Alves S, Churlaud G, Audrain M, Michaelsen-Preusse K, Fol R, Souchet B, et al. 2017 Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice. Brain 140 826–842

    PubMed  Google Scholar 

  • Alzheimer’s Disease International 2018 World Alzheimer Report 2018, the state of the art of dementia research: new frontiers (London: Alzheimer’s Disease International)

    Google Scholar 

  • Arbor SC, LaFontaine M and Cumbay M 2016 Amyloid-beta Alzheimer targets—protein processing, lipid rafts, and amyloid-beta pores. Yale J. Biol. Med. 89 5–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avdulov NA, Chochina SV, Igbavboa U, O’hare EO, Schroeder F, Cleary JP, et al. 1997 Amyloid β-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J. Neurochem. 68 2086–2091

    Article  CAS  PubMed  Google Scholar 

  • Baek H, Ye M, Kang G-H, Lee C, Lee G, Choi DB, et al. 2016 Neuroprotective effects of CD4+ CD25+ Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget 7 69347

    Article  PubMed  PubMed Central  Google Scholar 

  • Basdeo SA, Campbell NK, Sullivan LM, Flood B, Creagh EM, Mantle TJ, Fletcher JM and Dunne A 2016 Suppression of human alloreactive T cells by linear tetrapyrroles; relevance for transplantation. Transl. Res. 178 81–94

    Article  CAS  PubMed  Google Scholar 

  • Benedetti S, Benvenuti F, Scoglio S and Canestrari F 2010 Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae. J. Med. Food 13 223–227

    Article  CAS  PubMed  Google Scholar 

  • Bertram L, Lill CM and Tanzi RE 2010 The genetics of Alzheimer disease: back to the future. Neuron 68 270–281

    Article  CAS  PubMed  Google Scholar 

  • Bijlard M, de Jonge JC, Klunder B, Nomden A, Hoekstra D and Baron W 2016 MAL Is a regulator of the recruitment of myelin protein PLP to membrane microdomains. PLoS One 11 e0155317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bloom GS 2014 Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71 505–508

    Article  PubMed  Google Scholar 

  • Boccardi V, Westman E, Pelini L, Lindberg O, Muehlboeck J-S, Simmons A, et al. 2019 Differential associations of IL-4 with hippocampal subfields in Mild Cognitive Impairment and Alzheimer’s disease. Front. Aging Neurosci. 10 439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolós M, Perea JR and Avila J 2017 Alzheimer’s disease as an inflammatory disease. Biomol. Concepts 8 37–43

    Article  PubMed  CAS  Google Scholar 

  • Bouhrara M, Reiter DA, Bergeron CM, Zukley LM, Ferrucci L, Resnick SM, et al. 2018 Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content. Alzheimers Dement. 14 998–1004

    Article  PubMed  PubMed Central  Google Scholar 

  • Boraschi D and Penton-Rol G 2014 Perspectives in immunopharmacology: the future of immunosuppression. Immunol Lett 161 211–215

    Google Scholar 

  • Butterfield DA, Drake J, Pocernich C and Castegna A 2001 Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol. Med. 7 548–554

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA and Halliwell B 2019 Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20 148–160

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Llanos M, Lagumersindez-Denis N, Marín-Prida J, Pavón-Fuentes N, Falcón-Cama V, Piniella-Matamoros B, et al. 2018 Beneficial effects of oral administration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sci. 194 130–138

    Article  CAS  PubMed  Google Scholar 

  • Chang C-C, Chang Y-T, Huang C-W, Tsai S-J, Hsu S-W, Huang S-H, et al. 2018 Associations of Bcl-2 rs956572 genotype groups in the structural covariance network in early-stage Alzheimer’s disease. Alzheimers Res. Ther. 10 17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J-C, Liu KS, Yang T-J, Hwang J-H, Chan Y-C APP Overexpression causes Aβ-independent neuronal death through intrinsic apoptosis pathway. Lee I-T 2012 Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells. Nutr. Neurosci. 15 252–256

  • Cheng N, Jiao S, Gumaste A, Bai L and Belluscio L 2016 APP Overexpression causes Aβ-independent neuronal death through intrinsic apoptosis pathway. eNeuro. https://doi.org/10.1523/ENEURO.0150-16.2016

  • Cho S-J, Yun S-M, Jo C, Jeong J, Park MH, Han C, et al. 2019 Altered expression of Notch1 in Alzheimer’s disease. PLoS One 14 e0224941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi WY, Kang DH and Lee HY 2018 Effect of fermented spirulina maxima extract on cognitive-enhancing activities in mice with scopolamine-induced dementia. Evid. Based Complement. Alternat. Med. 2018 7218504

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu T-H, Cummins K, Sparling JS, Tsutsui S, Brideau C, Nilsson KPR, et al. 2017 Axonal and myelinic pathology in 5xFAD Alzheimer’s mouse spinal cord. PLoS One 12 e0188218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cipollini V, Anrather J, Orzi F and Iadecola C 2019 Th17 and cognitive impairment: possible mechanisms of action. Front. Neuroanat. 13 95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coman H and Nemeş B 2017 New therapeutic targets in Alzheimer’s disease. Int. J. Gerontol. 11 2–6

    Article  Google Scholar 

  • Cristiano C, Volpicelli F, Lippiello P, Buono B, Raucci F, Piccolo M, et al. 2019 Neutralization of IL-17 rescues amyloid-β-induced neuroinflammation and memory impairment. Br. J. Pharmacol. 176 3544–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuello AC, Hall H and Do Carmo S 2019 Experimental pharmacology in transgenic rodent models of Alzheimer’s disease. Front. Pharmacol. 10 189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, Calle V, et al. 2016 Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139 1237–1251

    Article  PubMed  Google Scholar 

  • De Paola M, Buanne P, Biordi L, Bertini R, Ghezzi P and Mennini T 2007 Chemokine MIP-2/CXCL2, acting on CXCR2, induces motor neuron death in primary cultures. Neuroimmunomodulation 14 310–316

    Article  PubMed  CAS  Google Scholar 

  • Dong Y-X, Zhang H-Y, Li H-Y, Liu P-H, Sui Y and Sun X-H 2018 Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction. Neural Regen. Res. 13 908–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake JD, Daiello LA, Chambers A and Ott BR 2018 VCAM-1 as a biomarker of cognitive decline in Alzheimer´s disease. Alzheimers Dement. 14 P700

    Article  Google Scholar 

  • Eriksen NT 2008 Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 80 1–14

    Article  CAS  PubMed  Google Scholar 

  • Estrada LD, Oliveira-Cruz L and Cabrera D 2018 Transforming growth factor beta type I role in neurodegeneration: implications for Alzheimer’s disease. Curr. Prot. Pept. Sci. 19 1180–1188

    Article  CAS  Google Scholar 

  • Farooqui AA 2010 Neurochemical aspects of neurotraumatic and neurodegenerative diseases (New York: Springer)

    Book  Google Scholar 

  • Fernández-Rojas B, Hernández-Juárez J and Pedraza-Chaverri J 2014 Nutraceutical properties of phycocyanin. J. Funct. Food 11 375–392

    Article  CAS  Google Scholar 

  • Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, et al. 1998 Amyloid-β induces chemokine secretion and monocyte migration across a human blood–brain barrier model. Mol. Med. 4 480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folch J, Ettcheto M, Petrov D, Abad S, Pedrós I, Marin M, et al. 2018 Review of the advances in treatment for Alzheimer disease: strategies for combating β-amyloid protein. Neurologia 33 47–58

    Article  CAS  PubMed  Google Scholar 

  • Frohman EM, Frohman TC, Gupta S, de Fougerolles A and van den Noort S 1991 Expression of intercellular adhesion molecule 1 (ICAM-1) in Alzheimer’s disease. J. Neurol. Sci. 106 105–111

    Article  CAS  PubMed  Google Scholar 

  • Gan-Or Z, Amshalom I, Bar-Shira A, Gana-Weisz M, Mirelman A, Marder K, et al. 2015 The Alzheimer disease BIN1 locus as a modifier of GBA-associated Parkinson disease. J. Neurol. 262 2443–2447

    Article  CAS  PubMed  Google Scholar 

  • Giri RK, Selvaraj SK and Kalra VK 2003 Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked by small inhibitory RNA duplexes for early growth response-1 messenger RNA. J. Immunol. 170 5281–5294

    Article  CAS  PubMed  Google Scholar 

  • Glabe CC 2005 Amyloid accumulation and pathogenesis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar ; in Harris JR, Fahrenholz F (eds) Alzheimer’s Disease. Subcellular Biochemistry 38 (Boston: Springer) pp 167–77

  • Gorlovoy P, Larionov S, Pham TTH and Neumann H 2009 Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J. 23 2502–2513

    Article  CAS  PubMed  Google Scholar 

  • Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, et al. 2000 Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 156 15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu X-M, Huang H-C and Jiang Z-F 2012 Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer’s disease. Neurosci. Bull. 28 631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen DV, Hanson JE and Sheng M 2018 Microglia in Alzheimer’s disease. J. Cell Biol. 217 459–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy J 2006 Alzheimer’s disease. The amyloid cascade hypothesis: an update and reappraisal. J. Alzheimer’s Dis. 9 151–153

    Article  CAS  Google Scholar 

  • Hardy J 2017 The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis.” FEBS J. 284 1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Golenbock DT and Latz E 2015 Innate immunity in Alzheimers disease. Nat. Immunol. 16 229–236

    Article  CAS  PubMed  Google Scholar 

  • Heppner FL, Ransohoff RM and Becher B 2015 Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16 358–372

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Purohit D, Haroutunian V, Luterman JD, Willis F, Naslund J, et al. 2001 Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch. Neurol. 5 487–492

    Google Scholar 

  • Huang WJ, Zhang X and Chen WW 2016 Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 4 519–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J-H, Chen J-C and Chan Y-C 2013 Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes. PLoS One 8 e58215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen GS, Drapeau C, Lenninger M and Benson KF 2016 Clinical safety of a high dose of phycocyanin-enriched aqueous extract from Arthrospira (Spirulina) platensis: results from a randomized, double-blind, placebo-controlled study with a focus on anticoagulant activity and platelet activation. J. Med. Food 19 645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen GS, Attridge VL, Carter SG, Guthrie J, Ehmann A and Benson KF 2016 Consumption of an aqueous cyanophyta extract derived from Arthrospira platensis is associated with reduction of chronic pain: results from two human clinical pilot studies. Nutr. Diet. Suppl. 8 65–70

    Article  CAS  Google Scholar 

  • Joob B and Wiwanitkit V 2019 Cyclooxygenase-2 gene polymorphisms and risk of Alzheimer’s disease: a possible biomolecular explanation. Neurol. India 67 1142

    Article  PubMed  Google Scholar 

  • Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, et al. 2005 Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 12 19–24

    Article  CAS  PubMed  Google Scholar 

  • Kapogiannis D and Mattson MP 2011 Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 10 187–198

    Article  CAS  PubMed  Google Scholar 

  • Khatri N and Man H 2013 Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front. Neurol. 4 199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM and Lamb BT 2018 Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 4 575–590

    Article  Google Scholar 

  • Kuzawa CW and Blair C 2019 A hypothesis linking the energy demand of the brain to obesity risk. Proc. Nat. Acad. Sci. 116 13266–13275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamoke F, Mazzone V, Persichini T, Maraschi A, Harris MB, Venema RC, et al. 2015 Amyloid β peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation. J. Neuroinflamm. 12 84

    Article  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. 2012 Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487 443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Han SB, Nam SY, Oh KW and Hong JT 2010 Inflammation and Alzheimer’s disease. Arch. Pharm. Res. 33 1539–1556

    Article  CAS  PubMed  Google Scholar 

  • Lissi E, Pizarro M, Aspee A and Romay C 2000 Kinetics of phycocyanine bilin groups destruction by peroxyl radicals. Free Rad. Biol. Med. 28 1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jovcevski B and Pukala TL 2019 C-Phycocyanin from spirulina Inhibits α-synuclein and amyloid-β fibril formation but not amorphous aggregation. J. Nat. Prod. 82 66–73

    Article  CAS  PubMed  Google Scholar 

  • Lorenzini L, Fernandez M, Baldassarro VA, Bighinati A, Giuliani A, Calzà L and Giardino L 2020 White matter and neuroprotection in Alzheimer’s dementia. Molecules 25 503

    Article  CAS  PubMed Central  Google Scholar 

  • Lufei S, Bing L, Zhao Y, Jingzhen T and Song Q 2012 Chronic toxicity study of Phycocyanin on Sprague Dawley rats. China Med. Herald 11 15–21

    Google Scholar 

  • Maezawa I, Zimin PI, Wulff H and Jin LW 2011 Amyloid-b protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J. Biol. Chem. 286 3693–3706

    Article  CAS  PubMed  Google Scholar 

  • Mandrekar S and Landreth GE 2010 Microglia and inflammation in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 9 156–167

    Article  PubMed Central  Google Scholar 

  • McCarty MF 2007 Clinical potential of Spirulina as a source of Phycocyanobilin. J. Med. Food 10 566–570

    Article  CAS  PubMed  Google Scholar 

  • Madav Y, Wairkar S and Prabhakar B 2019 Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease. Brain Res. Bull. 146 171–184

    Article  CAS  PubMed  Google Scholar 

  • Majdi A, Sadigh-Eteghad S, Aghsan SR, Farajdokht F, Vatandoust SM, Namvaran A, et al. 2020 Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev. Neurosci. 26 391–413

    Article  CAS  Google Scholar 

  • Marín-Prida J, Pentón-Rol G, Rodrigues FP, Alberici LC, Stringhetta K, Leopoldino AM, et al. 2012 C-Phycocyanin protects SH-SY5Y cells from oxidative injury, rat retina from transient ischemia and rat brain mitochondria from Ca2+/phosphate-induced impairment. Brain Res. Bull. 89 159–167

    Article  PubMed  CAS  Google Scholar 

  • Marín-Prida J, Pavón-Fuentes N, Llópiz-Arzuaga A, Fernández-Massó JR, Delgado-Roche L, Mendoza-Marí Y, et al. 2013 Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats. Toxicol. Appl. Pharmacol. 272 49–60

    Article  PubMed  CAS  Google Scholar 

  • McCarty MF, Barroso-Aranda J and Contreras F 2010 Oral phycocyanobilin may diminish the pathogenicity of activated brain microglia in neurodegenerative disorders. Med. Hypotheses 74 601–605

    Article  CAS  PubMed  Google Scholar 

  • Min SK, Park JS, Luo L, Kwon YS, Lee HC, et al. 2015 Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model. Sci. Rep. 5 14418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minic S, Stanic-Vucinic D, Radomirovic M, Radibratovic M, Milcic M, Nikolic M, et al. 2018 Characterization and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin. Food Chem. 239 1090–1099

    Article  CAS  PubMed  Google Scholar 

  • Mitew S, Kirkcaldie MT, Halliday GM, Shepherd CE, Vickers JC and Dickson TC 2010 Focal demyelination in Alzheimer’s disease and transgenic mouse models. Acta Neuropathol. 119 567–577

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Siddiqui WA and Khandelwal S 2015 C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: a comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem. Biol. Int. 238 138–150

    Article  CAS  Google Scholar 

  • Morganti C, Bonora M, Sbano L, Morciano G, Aquila G, Campo G, et al. 2018 The mitochondrial permeability transition pore; in Mitochondrial Biology and Experimental Therapeutics (ed) Oliveira PJ (New York: Springer) 47–73

    Chapter  Google Scholar 

  • Moreira PI, Carvalho C, Zhu X, Smith MA and Perry G 2010 Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta (BBA)-Mol Basis Dis. 1802 2–10

    Article  CAS  Google Scholar 

  • Mueller MC, Baranowski BJ and Hayward GC 2018 New insights on the role of residue 673 of APP in Alzheimer’s disease. J. Neurosci. 38 515–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu KA, Sarada R, Manoj G, Khan M, Swamy MM, Viswanatha S, et al. 1999 Toxicity assessment of phycocyanin-A blue colorant from blue green alga Spirulina platensis. Food Biotechnol. 13 51–66

    Article  CAS  Google Scholar 

  • Nave KA 2010 Myelination and support of axonal integrity by glia. Nature 468 244

    Article  CAS  PubMed  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, et al. 2001 Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60 759–767

    Article  CAS  PubMed  Google Scholar 

  • Olsen JA and Akirav EM 2015 Remyelination in multiple sclerosis: cellular mechanisms and novel therapeutic approaches. J. Neurosci. Res. 93 687–696

    Article  CAS  PubMed  Google Scholar 

  • Ong W-Y, Tanaka K, Dawe GS, Ittner LM and Farooqui AA 2013 Slow excitotoxicity in Alzheimer’s disease. J. Alzheimers Dis. 35 643–668

    Article  PubMed  CAS  Google Scholar 

  • Pacher P, Beckman JS and Liaudet L 2007 Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87 315–424

    Article  CAS  PubMed  Google Scholar 

  • Pal SK, Noguchi S, Yamamoto G, Yamada A, Isobe T, Hayashi S, et al. 2012 Expression of myelin and lymphocyte protein (MAL) in oral carcinogenesis. Med. Mol. Morphol. 45 222–228

    Article  CAS  PubMed  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. 2011 Synaptic pruning by microglia is necessary for normal brain development. Science 333 1456–1458

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Douillard H, Koutroumanis M, Goodyer C and LeBlanc A 1996 Amyloid β peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates Bax expression in human neurons. J. Neurosci. 16 7533–7539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel JR, Williams JL, Muccigrosso MM, Liu L, Sun T, Rubin JB, et al. 2012 Astrocyte TNFR2 is required for CXCL12-mediated regulation of oligodendrocyte progenitor proliferation and differentiation within the adult CNS. Acta Neuropathol. 124 847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavón-Fuentes N, Marín-Prida J, Llópiz-Arzuaga A, Falcón-Cama V, Campos-Mojena R, Cervantes-Llanos M, Piniella-Matamoros B, Pentón-Arias E and Pentón-Rol G 2020 Phycocyanobilin reduces brain injury after endothelin-1- induced focal cerebral ischaemia. Clin. Exp. Pharmacol. Physiol. 47 383–392

    Article  PubMed  CAS  Google Scholar 

  • Pentón-Rol G, Marín-Prida J, Pardo-Andreu G, Martínez-Sánchez G, Acosta-Medina EF, Valdivia-Acosta A, et al. 2011 C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Res. Bull. 86 42–52

    Article  PubMed  CAS  Google Scholar 

  • Pentón-Rol G, Martínez-Sánchez G, Cervantes-Llanos M, Lagumersindez-Denis N, Acosta-Medina EF, Falcón-Cama V, et al. 2011 C-Phycocyanin ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Int. Immunopharmacol. 11 29–38

    Article  PubMed  CAS  Google Scholar 

  • Pentón-Rol G, Lagumersindez-Denis N, Muzio L, Bergami A, Furlan R, Fernández-Massó JR, et al. 2016 Comparative neuroregenerative effects of C-phycocyanin and IFN-beta in a model of multiple sclerosis in mice. J. Neuroimmune Pharmacol. 11 153–167

    Article  PubMed  Google Scholar 

  • Pentón-Rol G and Cervantes-Llanos M 2018 Report on the symposium “molecular mechanisms involved in neurodegeneration.” Behav. Sci. 8 16

    Article  PubMed Central  Google Scholar 

  • Pentón-Rol G, Marín-Prida J and Falcón-Cama V 2018b C-phycocyanin and phycocyanobilin as remyelination therapies for enhancing recovery in multiple sclerosis and ischemic stroke: a preclinical perspective. Behav. Sci. (Basel) 8

  • Pickering M, Cumiskey D and O’Connor JJ 2005 Actions of TNF-α on glutamatergic synaptic transmission in the central nervous system. Exp. Physiol. 90 663–670

    Article  CAS  PubMed  Google Scholar 

  • Pimplikar SW, Nixon RA, Robakis NK, Shen J and Tsai L-H 2010 Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J. Neurosci. 30 14946–14954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleonsil P, Soogarun S and Suwanwong Y 2013 Anti-oxidant activity of holo-and apo-c-phycocyanin and their protective effects on human erythrocytes. Int. J. Biol. Macromol. 60 393–398

    Article  CAS  PubMed  Google Scholar 

  • Querfurth HW and LaFerla FM 2010 Alzheimer’s disease. N. Engl. J. Med. 362 329–344

    Article  CAS  PubMed  Google Scholar 

  • Raasakka A, Ruskamo S, Kowal J, Han H, Baumann A, Myllykoski M, et al. 2019 Molecular structure and function of myelin protein P0 in membrane stacking. Sci. Rep. 9 642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P and Madyastha K 2000 Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem. Biophys. Res. Commun. 277 599–603

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH and Oliver D 2019 Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in alzheimer’s disease. Cells 8 488

    Article  CAS  PubMed Central  Google Scholar 

  • Rimbau V, Camins A, Romay C, González R and Pallàs M 1999 Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci. Lett. 276 75–78

    Article  CAS  PubMed  Google Scholar 

  • Saini MK and Sanyal SN 2014 Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem. Cell Biol. 92 206–218

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H and Hiltunen M 2015 Impaired mitochondrial energy metabolism in Alzheimer’s disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog. Neurobiol. 131 1–20

    Article  CAS  PubMed  Google Scholar 

  • Sedgwick AC, Dou W-T, Jiao J-B, Wu L, Williams GT, Jenkins ATA, et al. 2018 An ESIPT probe for the ratiometric imaging of peroxynitrite facilitated by binding to Aβ-aggregates. J. Am. Chem. Soc. 140 14267–14271

    Article  CAS  PubMed  Google Scholar 

  • Serpente M, Bonsi R, Scarpini E and Galimberti D 2014 Innate immune system and inflammation in Alzheimer’s disease: from pathogenesis to treatment. Neuroimmunomodulation 21 79–87

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E and Hyman BT 2011 Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1 a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shariatpanahi M, Khodagholi F, Ashabi G, Bonakdar Yazdi B, Hassani S, Azami K, et al. 2016 The involvement of protein kinase G inhibitor in regulation of apoptosis and autophagy markers in spatial memory deficit induced by Abeta. Fundam. Clin. Pharmacol. 30 364–375

    Article  CAS  PubMed  Google Scholar 

  • Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, et al. 2000 Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem. Biophys. Res. Commun. 273 5–9

    Article  CAS  PubMed  Google Scholar 

  • Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, et al. 2019 Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 1–23

  • Singh NK, Hasan SS, Kumar J, Raj I, Pathan AA, Parmar A, Shakil S, Gourinath S and Madamwar D 2014 Crystal structure and interaction of phycocyanin with β-secretase: a putative therapy for Alzheimer’s disease. CNS Neurol. Dis. Drug Targets 13 691–698

    Article  CAS  Google Scholar 

  • Sinyor B, Mineo J and Ochner C 2020 Alzheimer’s disease, inflammation, and the role of antioxidants. J. Alzheimer’s Dis. Rep. 4 175–183

    Article  Google Scholar 

  • Shiow LR, Favrais G, Schirmer L, Schang AL, Cipriani S, Andres C, et al. 2017 Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia 65 2024–2037

    Article  PubMed  PubMed Central  Google Scholar 

  • Spangenberg EE and Green KN 2017 Inflammation in Alzheimer’s disease: lessons learned from microglia-depletion models. Brain Behav. Immun. 61 1–11

    Article  CAS  PubMed  Google Scholar 

  • Stansley B, Post J and Hensley K 2012 A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J. Neuroinflamm. 9 115

    Article  Google Scholar 

  • Stricker NH, Schweinsburg B, Delano-Wood L, Wierenga CE, Bangen KJ, Haaland K, et al. 2009 Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis. Neuroimage 45 10–16

    Article  CAS  PubMed  Google Scholar 

  • Sultana R, Piroddi M, Galli F and Butterfield DA 2008 Protein levels and activity of some antioxidant enzymes in hippocampus of subjects with amnestic mild cognitive impairment. Neurochem. Res. 33 2540–2546

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhou H, Bai F, Zhang Z and Ren Q 2017 Remyelination: a potential therapeutic strategy for Alzheimer’s disease? J. Alzheimers Dis. 58 597–612

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Sagare AP and Zlokovic BV 2018 Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14 133–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi RH, Nagao T and Gouras GK 2017 Plaque formation and the intraneuronal accumulation of beta-amyloid in Alzheimer’s disease. Pathol. Int. 67 185–193

    Article  CAS  PubMed  Google Scholar 

  • Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA and Gouras GK 2010 Co-occurrence of Alzheimer’s disease β-amyloid and tau pathologies at synapses. Neurobiol. Aging 31 1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Tanzi RE 2005 The synaptic Abeta hypothesis of Alzheimer disease. Nat Neurosci. 8 977–979

    Article  CAS  PubMed  Google Scholar 

  • Tönnies E and Trushina E 2017 Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 57 1105–1121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tseveleki V, Rubio R, Vamvakas S-S, White J, Taoufik E, Petit E, et al. 2010 Comparative gene expression analysis in mouse models for multiple sclerosis, Alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes. Genomics 96 82–91

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D 2017 Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal. Biochem. 524 13–30

    Article  CAS  PubMed  Google Scholar 

  • van der Kant R and Goldstein LSB 2015 Cellular functions of the amyloid precursor protein from development to dementia. Dev. Cell. 32 502–515

    Article  PubMed  CAS  Google Scholar 

  • Varadarajan S, Yatin S, Aksenova M and Butterfield DA 2000 Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130 184–208

    Article  CAS  PubMed  Google Scholar 

  • Walker DG, Lue L-F, Tang TM, Adler CH, Caviness JN, Sabbagh MN, et al. 2017 Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer’s pathology not α-synuclein pathology. Neurobiol. Aging 54 175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker KA, Ficek BN and Westbrook R 2019 Understanding the role of systemic inflammation in Alzheimer’s disease. ACS Chem. Neurosci. 10 3340–3342

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Du Y, Wang K, Xu G, Luo S and He G 2016 Chronic cerebral hypoperfusion induces memory deficits and facilitates Aβ generation in C57BL/6J mice. Exp. Neurol. 283 353–364

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wang Y, Zhang Q, Zhang H, Li Z, Liu X, et al. 2020 Amelioration of cognitive deficits by Spirulina platensis in L-methionine-induced rat model of vascular dementia. Phcog. Mag. 16 S133–S141

    Article  CAS  Google Scholar 

  • Wang Z-H, Gong K, Liu X, Zhang Z, Sun X, Wei ZZ, et al. 2018 C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease. Nat. Commun. 9 1–16

    CAS  Google Scholar 

  • Wilkaniec A, Schmitt K, Grimm A, Strosznajder JB and Eckert A 2016 Alzheimer’s amyloid-β peptide disturbs P2X7 receptor-mediated circadian oscillations of intracellular calcium. Folia Neuropathol. 54 360–368

    Article  PubMed  Google Scholar 

  • Wirths O, Breyhan H, Marcello A, Cotel M-C, Brück W and Bayer TA 2010 Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol. Aging 31 747–757

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Liu L, Miron A, Klímová B, Wan D and Kuca K 2016 The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch. Toxicol. 90 1817–1840

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yang H, Xie Z, Wei L and Bi J 2013 Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PLoS One 8 e69129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yirmiya R and Goshen I 2011 Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 25 181–213

    Article  CAS  PubMed  Google Scholar 

  • Youm Y-H, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, et al. 2013 Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18 519–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabel M, Nackenoff A, Kirsch WM, Harrison FE, Perry G and Schrag M 2018 Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer’s disease brain: a meta-analysis in human pathological specimens. Free Rad. Biol. Med. 115 351–360

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Rissman RA and Feng J 2015 Characterization of ATP alternations in an Alzheimer’s disease transgenic mouse model. J. Alzheimers Dis. 44 375–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, et al. 2014 Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat. Med. 20 1254–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Song M, Liu X, Su Kang S, Duong DM, Seyfried NT, et al. 2015 Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat. Commun. 6 8762

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Obianyo O, Dall E, Du Y, Fu H, Liu X, et al. 2017 Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer’s disease. Nat Commun. 8 14740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhao R, Wu J, Wang Q, Pang K, Shi Q, et al. 2018 Melatonin protects against Aβ-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. BioFactors 44 609–618

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Inoguchi T, Sasaki S, Maeda Y, McCarty MF, Fujii M, et al. 2012 Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am. J. Physiol. Reg. Integr. Comp. Physiol. 304 R110–R20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giselle Pentón-Rol.

Additional information

Corresponding editor: Neeraj Jain.

Corresponding editor: Neeraj Jain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piniella-Matamoros, B., Marín-Prida, J. & Pentón-Rol, G. Nutraceutical and therapeutic potential of Phycocyanobilin for treating Alzheimer’s disease. J Biosci 46, 42 (2021). https://doi.org/10.1007/s12038-021-00161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-021-00161-7

Keywords

Navigation