Skip to main content
Log in

New clues into the mechanisms of rice domestication

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Domestication of rice involved incorporation of specific yield-related changes in wild species of rice. This agricultural process has been of significant interest for plant biologists. The recent advance in genomics has provided new tools to investigate the genetic basis and consequences of domestication. Several genes involved in domestication and diversification process have been characterized, and as expected, this list is over-represented by transcription factors and their co-factors. Most often the modification orchestrated expression levels of genes such as those coding for transcription factors. It has been proposed that transcriptional regulators and their regulation is likely a major theme controlling morphological differences between crops and their progenitors. However, recent data indicate that single amino acid changes in genes coding for key proteins as well as epigenetic and small RNA-mediated pathways also contributed towards domestication-associated phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad A, Zhang Y and Cao XF 2010 Decoding the epigenetic language of plant development. Mol. Plant 3 719–728

    Article  CAS  Google Scholar 

  • Ali A, Raddatz N, Aman R, Kim S, Park HC, Jan M, Baek D, Khan IU, Oh DH, Lee SY, Bressan RA, Lee KW, Maggio A, Pardo JM, Bohnert HJ and Yun DJ 2016 A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance. Plant Physiol. 171 2112–2126

    Article  Google Scholar 

  • Barber WT, Zhang W, Win H, Varala KK, Dorweiler JE, Hudson ME and Moose SP 2012 Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl. Acad. Sci. 109 10444–10449

    Article  CAS  Google Scholar 

  • Baulcombe D 2004 RNA silencing in plants. Nature 431 356–363

    Article  CAS  Google Scholar 

  • Bond DM and Baulcombe DC 2014 Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol. 24 100–107

    Article  CAS  Google Scholar 

  • Callaway E 2014 The birth of rice. Nature 514 S58–S59

    Article  Google Scholar 

  • Campo S, Peris-Peris C, Siré C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C and San Segundo B 2013 Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol. 199 212–227

    Article  CAS  Google Scholar 

  • Choi JY, Platts AE, Fuller DQ, Hsing YI, Wing RA, Purugganan MD and Kim Y 2017 The rice paradox: multiple origins but single domestication in Asian rice. Mol. Biol. Evol. 34 969–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley JF, Gaut BS and Smith BD 2006 The molecular genetics of crop domestication. Cell 127 1309–1321

    Article  CAS  Google Scholar 

  • Groszmann M, Greaves IK, Albert N, Fujimoto R, Helliwell CA, Dennis ES and Peacock WJ 2011 Epigenetics in plants—vernalisation and hybrid vigour. Biochim. Biophys. Acta Gene Regul. Mech. 1809 427–437

    Article  CAS  Google Scholar 

  • Groszmann M, Greaves IK, Fujimoto R, James Peacock W and Dennis ES 2013 The role of epigenetics in hybrid vigour. Trends Genet. 29 684–690

    Article  CAS  Google Scholar 

  • Hollick JB and Chandler VL 2001 Genetic factors required to maintain repression of a paramutagenic maize pl1 allele. Genetics 157 369–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houston K, McKim SM, Comadran J, Bonar N, Druka I, Uzrek N, Cirillo E, Guzy-Wrobelska J, Collins NC, Halpin C, Hansson M, Dockter C, Druka A and Waugh R 2013 Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc. Natl. Acad. Sci. 110 16675–16680

    Article  CAS  Google Scholar 

  • Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L and Sun C 2017 NOG1 increases grain production in rice. Nat. Commun. 8 1497

    Article  Google Scholar 

  • Izawa T 2008 The process of rice domestication: a new model based on recent data. Rice 1 127–134

    Article  Google Scholar 

  • Izawa T, Konishi S, Shomura A and Yano M 2009 DNA changes tell us about rice domestication. Curr. Opin. Plant Biol. 12 185–192

    Article  CAS  Google Scholar 

  • Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M and Levy AA 2011 Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188 263–272

    Article  CAS  Google Scholar 

  • Kharabian-Masouleh A, Waters DL, Reinke RF, Ward R and Henry RJ 2012 SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci. Rep. 2 557

    Article  Google Scholar 

  • Khush GS 1997 Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35 25–34

    Article  CAS  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T and Yano M 2006 An SNP caused loss of seed shattering during rice domestication. Science 312 1392–1396

    Article  CAS  Google Scholar 

  • Kovach MJ, Sweeney MT and McCouch SR 2007 New insights into the history of rice domestication. Trends Genet. 23 578–587

    Article  CAS  Google Scholar 

  • Li C, Zhou A and Sang T 2006 Rice domestication by reducing shattering. Science 311 1936–1939

    Article  CAS  Google Scholar 

  • Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L, Lu Y and Shi J 2012 Deep sequencing and microarray hybridization identify conserved and species-specific MicroRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS ONE 7 e43451

    Article  CAS  Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan JX, Gao JP and Lin HX 2015 Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat. Genet. 47 827–833

    Article  CAS  Google Scholar 

  • Li X, Guo K, Zhu X, Chen P, Li Y, Xie G, Wang L, Wang Y, Persson S and Peng L 2017 Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genom. 18 55

    Article  Google Scholar 

  • Li X, Guo K, Zhu X, Chen P, Li Y, Xie G, Wang L, Wang Y, Persson S and Peng L 2017 Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genom. 18 55

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S and Chong K 2015 COLD1 confers chilling tolerance in rice. Cell 160 1209–1221

    Article  CAS  Google Scholar 

  • Meyer RS and Purugganan MD 2013 Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14 840–852

    Article  CAS  Google Scholar 

  • Morrell PL, Buckler ES and Ross-Ibarra J 2011 Crop genomics: advances and applications. Nat. Rev. Genet. 13 85–96

    Article  Google Scholar 

  • Niederhuth CE and Schmitz RJ 2014 Covering your bases: inheritance of DNA methylation in plant genomes. Mol. Plant 7 472–480

    Article  CAS  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, González-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernández S, Leyva-González MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K and Zhang Z 2014 Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl. Acad. Sci. USA 111 5135–5140

    Article  CAS  Google Scholar 

  • Rapp RA and Wendel JF 2005 Epigenetics and plant evolution. New Phytol. 168 81–91

    Article  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S and Lin HX 2005 A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37 1141–1146

    Article  CAS  Google Scholar 

  • Sanchez PL, Wing RA and Brar DS 2013 The wild relative of rice: genomes and genomics; in Zhang Q, Wing RA (eds.) Genetics and genomics of rice, plant genetics and genomics: crops and models, vol. 5, pp. 9–25

    Chapter  Google Scholar 

  • Seymour G, Poole M, Manning K and King GJ 2008 Genetics and epigenetics of fruit development and ripening. Curr. Opin. Plant Biol. 11 58–63

    Article  CAS  Google Scholar 

  • Shivaprasad PV, Dunn RM, Santos BA, Bassett A and Baulcombe DC 2012 Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 31 257–266

    Article  CAS  Google Scholar 

  • Simon SA and Meyers BC 2011 Small RNA-mediated epigenetic modifications in plants. Curr. Opin. Plant Biol. 14 148–155

    Article  CAS  Google Scholar 

  • Song Q, Zhang T, Stelly DM and Chen ZJ 2017 Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genom. Biol. 18 99

    Article  Google Scholar 

  • Sweeney M and McCouch S 2007 The complex history of the domestication of rice. Ann. Bot. 100 951–957

    Article  Google Scholar 

  • Swetha C, Debjani B, Pachamuthu K, Tirumalai V, Nair A, Prasad M and Shivaprasad PV 2018 Major domestication-related phenotypes in Indica rice are due to loss of miRNA-mediated laccase silencing. Plant Cell 30 2649–2662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swinnen G, Goossens A and Pauwels L 2016 Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci. 21 506–515

    Article  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP and McCouch SR 2003 Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theory Appl. Genet. 107 479–493

    Article  CAS  Google Scholar 

  • Vierstra RD 2009 The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell. Biol. 10 385–397

    Article  CAS  Google Scholar 

  • Wang Y, Shen D, Bo S, Chen H, Zheng J, Zhu QH, Cai D, Helliwell C and Fan L 2010 Sequence variation and selection of small RNAs in domesticated rice. BMC Evol. Biol. 10 119

    Article  Google Scholar 

Download references

Acknowledgements

PVS acknowledges support from Ramanujan Fellowship (SR/S2/RJN-109/2012; Department of Science and Technology, Government of India). The PI’s lab is supported by NCBS-TIFR core funds and a grant (BT/PR12394/AGIII/103/891/2014) from Department of Biotechnology, Government of India. The author thanks Vivek Hari Sundar for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padubidri V Shivaprasad.

Additional information

Communicated by BJ Rao.

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivaprasad, P.V. New clues into the mechanisms of rice domestication. J Biosci 44, 28 (2019). https://doi.org/10.1007/s12038-019-9844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9844-z

Keywords

Navigation