Skip to main content
Log in

D-Tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Biofilm genesis by Pseudomonas and Staphylococcus sp is associated with biofouling in natural settings. D-Tryptophan (D-Trp) inhibits bacterial biofilms and have been proposed for biofouling control applications. In this study, D-Trp significantly inhibited Pseudomonas mendocina and Staphylococcus aureus cell attachment (biofilm formation) rates on polystyrene 96-well microtiter plates in comparison with L-Tryptophan (L-Trp) and mixtures of D-/L-Tryptophan (D-/L-Trp). The inhibitory effect was greater on P. mendocina, where the rate of cell adherence was declined to 8.7 × 105 cells/h from 8.0 × 106 cells/h (control) in P. mendocina. In S. aureus it was declined to 4.2 × 107 cells/h from 9.2 × 107 cells/h (control) at 1 mM concentration. It hindered the intracellular communication and adherence in both the strains, as confirmed by SEM and real time PCR analysis. Addition of D-Trp to preformed biofilms also caused partial disassembly. Intra and interbacterial aggregation were decreased subsequently upon treatment with D-Trp. It repressed the genes involved in cell–cell communication, which could be responsible for the diminished biofilm formation of the selected strains. Hence D-Tryptophan has proved to be an effective strategy to control biofilm and may support in the development of surface coating technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barraud ND, Schleheck J, Klebensberger JS, Webb D, Hassett J. Rice SA and Kjelleberg S 2009 Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191 7333–7342

    Article  CAS  Google Scholar 

  • Bernardeau M, Gueguen M, Smith DGE, Corona-Barrera E and Vernoux JP 2009 In vitro antagonistic activities of Lactobacillus spp against Brachyspira hyodysenteriae and Brachyspira pilosicoli. Vet. Microbiol. 13 184–190

    Article  Google Scholar 

  • Brandenburg KS, Rodriguez KJ, McAnulty JF, Murphy CJ, Abbott NL, Schurr MJ and Czuprynski CJ 2013 Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57 1921–1925

    Article  CAS  Google Scholar 

  • Bremer PJ, Fillery S and Mcquillan AJ 2006 Laboratory scale clean-in-place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. Int. J. Food. Microbiol. 106 254–262

    Article  CAS  Google Scholar 

  • Busscher HJ, Norde W, Sharma PK and Van der Mei HC 2010 Interfacial re-arrangement in initial microbial adhesion to surfaces. Curr. Opin. Colloid Interface Sci. 15 510–517

    Article  CAS  Google Scholar 

  • Choi SC, Zhang C, Moon S and Oh YS 2014 Inhibitory effects of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) on acyl-homoserine lactone-mediated virulence factor production and biofilm formation in Pseudomonas aeruginosa PAO1. J. Microbiol. 52 734–742

    Article  CAS  Google Scholar 

  • Condell O, Iversen C, Power K and Fanning S 2012 Human safety and environmental concerns associated with the use of biocides. Antimicrob. Polym. 1 527

    Google Scholar 

  • Flemming HC and Wingender J 2010 The biofilm matrix. Nat. Rev. Microbiol. 8 623–633

    Article  CAS  Google Scholar 

  • Ferreira CL, Grześkowiak L, Collado M and Salminen S 2011 In vitro evaluation of Lactobacillus gasseri strains of infant origin on adhesion and aggregation of specific pathogens. J. Food Prot. 74 1482–1487

    Article  Google Scholar 

  • Ghosh S, Qureshi A and Purohit HJ 2017a Enhanced expression of catechol 1,2 dioxygenase gene in biofilm forming Pseudomonas mendocina EGD-AQ5 under increasing benzoate stress. Int. Biodeterior. Biodegrad. 118 57–65

    Article  CAS  Google Scholar 

  • Ghosh S, Qureshi A and Purohit HJ 2017b Biofilm microenvironments: modeling approach; in Purohit H, Kalia V, Vaidya A, Khardenavis A. (eds) Optimization and Applicability of Bioprocesses (Springer, Singapore) pp 305–322

    Chapter  Google Scholar 

  • Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J and Losick R 2011 Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J. Bacteriol. 193 5616–5622

    Article  CAS  Google Scholar 

  • Husain FM, Ahmad I, Asif M and Tahseen Q 2013 Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J. Biosci. 38 835–844

    Article  CAS  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R and Losick R 2010 D-amino acids trigger biofilm disassembly. Science 328 627–629

    Article  CAS  Google Scholar 

  • Kim SM, Park JH, Lee HS, Kim WB, Ryu JM, Han HJ and Choi SH 2013 LuxR homologue SmcR is essential for Vibrio vulnificus pathogenesis and biofilm detachment, and its expression is induced by host cells. Infect. Immun. 81 3721–3730

    Article  CAS  Google Scholar 

  • Lam H, Dong-Chan O, Cava F, Constantin NT, Clardy J, Miguel A and Waldor MK 2009 D-amino acids govern stationary phase. Science 325 1552–1555

    Article  CAS  Google Scholar 

  • Ledder RG, Timperley AS, Friswell MK, Macfarlane S and McBai AJ 2008 Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol. Ecol. 66 630–636

    Article  CAS  Google Scholar 

  • Lee JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J 2013 Antibiofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 29 491–499

    Article  CAS  Google Scholar 

  • Lee SHI, Cappato LP, Corassin CH, Cruz AG and Oliveira CAF 2016 Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. J. Dairy Sci. 99 2384–2390

    Article  CAS  Google Scholar 

  • Leiman SA, May JM, Lebar MD, Kahne D, Kolter R and Losick R 2013 D-Amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J. Bacteriol. 195 5391–5395

    Article  CAS  Google Scholar 

  • Li H, Ye Y, Ling N, Wu Q and Zhang J 2015 Inhibitory effects of D-Tryptophan on biofilm development by the foodborne Cronobacter sakazakii. Int. Dairy J. 49 125–129

    Article  Google Scholar 

  • Lupoli TJ, Tsukamoto H, Doud EH, Wang TS, Walker S and Kahne D 2011 Transpeptidase-mediated incorporation of D-amino acids into bacterial peptidoglycan. J. Am. Chem. Soc. 133 10748–10751

    Article  CAS  Google Scholar 

  • O’Gara JP 2007 ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 270 179–188

    Article  Google Scholar 

  • Pal S, Qureshi A and Purohit, HJ 2016 Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes. Biologia 71 239–246

    Article  CAS  Google Scholar 

  • Pal S, Qureshi A and Purohit, HJ 2018 Intercepting signalling mechanism to control environmental biofouling. 3 Biotech 8 364

    Article  Google Scholar 

  • Qureshi A, Pal S, Ghosh S, Kapley A and Purohit HJ 2015 Antifouling biomaterials. IJRAMR 2 677–684

    Google Scholar 

  • Ramon-Peréz M., Diaz-Cedillo F, Ibarra JA, Torales-Cardeña A, Rodriguez-Martinez S, Jan-Roblero J, Cancino-Diaz ME and Cancino-Diaz JC 2014 D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections. J. Med. Microbiol. 63 1369–1376

    Article  Google Scholar 

  • Rapsinski GJ, Makadia J, Bhanot N and Min Z 2016 Pseudomonas mendocina native valve infective endocarditis: a case report. J. Med. Case Rep. 10 275

    Article  Google Scholar 

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE and Handley PS 2003 Bacterial coaggregation: an integral process in the development of multispecies biofilms. Trends Microbiol. 11 94–100

    Article  CAS  Google Scholar 

  • Rickard AH, Campagna SR and Kolenbrander PE 2008 Autoinducer-2 is produced in saliva-fed flow conditions relevant to natural oral biofilms. J. Appl. Microbiol. 105 2096–2103

    Article  CAS  Google Scholar 

  • Rumbo C, Vallejo JA, Cabral MP, Martínez-Guitián M, Pérez A, Beceiro A and Bou G 2016 Assessment of antivirulence activity of several D-amino acids against Acinetobacter baumannii and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 71 3473–3481

    Article  CAS  Google Scholar 

  • Ryu EJ, Sim J, Sim J and Choi BK 2016 D-Galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens. J. Microbiol. 54 632–637

    Article  CAS  Google Scholar 

  • Sanchez CJ, Akers KS, Romano DR, Woodbury RL, Hardy SK, Murray CK and Wenke JC 2014 D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 58 4353–4361

    Article  Google Scholar 

  • Schmittgen TD and Livak KJ 2008 Analyzing real-time PCR data by the comparative Ct method. Nat. Protoc. 3 1101–1108

    Article  CAS  Google Scholar 

  • Schmeisser C, Stöckigt C, Raasch C, Wingender J, Timmis KN, Wenderoth DF, Flemming HC, Liesegang H, Schmitz RA, Jaeger KE and Streit WR 2003 Metagenome survey of biofilms in drinking-water networks. Appl. Environ. Microbiol. 69 7298–7309

    Article  CAS  Google Scholar 

  • Shah AD and Mitch WA 2012 Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: a critical review of nitrogenous disinfection byproduct formation pathways. Environ. Sci. Technol. 46 119–131

    Article  CAS  Google Scholar 

  • Simoes L, Simoes M and Vieira MJ 2008 Intergenic coaggregation among drinking water bacteria: Evidence for a role of Acinetobacter calcoaceticus as a bridging bacterium. Appl. Environ. Microbiol. 74 1259–1263

    Article  CAS  Google Scholar 

  • September SM, Els FA, Venter SN and Brozel VS 2007 Prevalence of bacterial pathogens in biofilms of drinking water distribution systems. J. Water Health 5 219–227

    Article  CAS  Google Scholar 

  • Stepanovic S, Djukić N, Opavski N and Djukić S 2003 Significance of inoculum size in biofilm formation by Staphylococci. Microbiologica 26 129–132

    CAS  PubMed  Google Scholar 

  • Venturi V 2006 Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 30 274–291

    Article  CAS  Google Scholar 

  • Waines PL, Moate R, Moody AJ, Allen M and Bradley G 2011 The effect of material choice on biofilm formation in a model warm water distribution system. Biofouling 27 1161–1174

    Article  Google Scholar 

  • Wang H, Hu C, Hu X, Yang M and Qu J 2012 Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Res. 46 1070–1078

    Article  CAS  Google Scholar 

  • Wang J, Yu B, Tian D and Ni M 2013 Rhamnolipid but not motility is associated with the initiation of biofilm seeding dispersal of Pseudomonas aeruginosa strain PA17. J. Biosci. 38 149–156

    Article  Google Scholar 

  • Wang B and Muir TW 2016 Regulation of virulence in Staphylococcus aureus: Molecular mechanisms and remaining puzzles. Cell Chem. Biol. 23 214–224

    Article  CAS  Google Scholar 

  • Wu H, Zhang J, Mi Z, Xie S, Chen C and Zhang X 2015 Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies. Appl. Microbiol. Biotechnol. 99 1947–1955

    Article  CAS  Google Scholar 

  • Yan X, Gu S, Shi Y, Cui X, Wen S and Ge J 2017 The effect of emodin on Staphylococcus aureus strains in planktonic form and biofilm formation in vitro. Arch. Microbiol. 199 1267–1275

    Article  CAS  Google Scholar 

  • Zhu J, Huang X, Zhang F, Feng L and Li J 2015 Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols. J. Microbiol. 53 829–836

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to Director CSIR-NEERI for constant support and inspiration and providing infrastructural facilities (KRC\2018\FEB\EBGD\1). The authors are grateful to Council of Scientific and Industrial Research (CSIR), Senior Research Fellowship (19-06/2011(i) EU-IV) to Ms. Saheli Ghosh. Funds from DBT (BT/PR16149/NER/95/85/2015) and CSIR Heritage MMP (HCP0018) projects are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asifa Qureshi.

Additional information

Communicated by Sudha Bhattacharya.

Corresponding editor: Sudha Bhattacharya

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Qureshi, A. & Purohit, H.J. D-Tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. J Biosci 44, 3 (2019). https://doi.org/10.1007/s12038-018-9841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-018-9841-7

Keywords

Navigation