Skip to main content
Log in

Synaptojanin regulates Hedgehog signalling by modulating phosphatidylinositol 4-phosphate levels

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In Hedgehog (Hh) signalling, Hh ligand concentration gradient is effectively translated into a spatially distinct transcriptional program to give precisely controlled context dependent developmental outcomes. In the absence of Hh, the receptor Patched (Ptc) inhibits the signal transducer Smoothened (Smo) by maintaining low phosphatidylinositol 4-phosphate (PI(4)P) levels. Binding of Hh to its receptor Ptc promotes PI(4)P production, which in turn activates Smo. Using wing-discs of Drosophila melanogaster, this study shows that Synaptojanin (Synj), a dual phosphatase, modulates PI(4)P levels and affects Smo activation, and thereby functions as an additional regulatory step in the Hh pathway. Reducing the levels of Synj in the wing-discs caused enhancement of a Hh dominant gain-of-function Moonrat phenotype in the adult wings. Synj downregulation augmented Hh signalling, which was associated with elevated PI(4)P levels and Smo activation. Synj did not control the absolute pathway activity but rather fine-tuned the response since its downregulation increased expression of decapentaplegic (dpp), a low-threshold target of the pathway while the high-threshold targets remained unaffected. This is the first report that identifies Synj as a negative regulator of Hh signalling, implying its importance and an additional regulatory step in Hh signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Balakrishnan SS, Basu U and Raghu P 2015 Phosphoinositide signalling in Drosophila. Biochim. Biophys. Acta. 1851 770–784

    Article  CAS  Google Scholar 

  • Bidet M, Joubert O, Lacombe B, Ciantar M, Nehmé R, Mollat P, Brétillon L, Faure H, Bittman R, Ruat M and Mus-Veteau I 2011 The hedgehog receptor patched is involved in cholesterol transport. PLoS One 6 e23834

    Article  CAS  Google Scholar 

  • Blair SS 2007 Wing Vein Patterning in Drosophila and the analysis of intercellular signaling. Annu. Rev. Cell Dev. Biol. 23 293–319

    Article  CAS  Google Scholar 

  • Brand AH and Perrimon N 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118 401–415

    CAS  PubMed  Google Scholar 

  • Briscoe J and Thérond PP 2013 The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14 416–429

    Article  Google Scholar 

  • Calleja M, Moreno E, Pelaz S and Morata G 1996 Visualization of gene expression in living adult Drosophila. Science 274 252–255

    Article  CAS  Google Scholar 

  • Capdevila J and Guerrero I 1994 Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J. 13 4459–4468

    Article  CAS  Google Scholar 

  • Chávez M, Ena S, Van Sande J, de Kerchove d’Exaerde A, Schurmans S and Schiffmann SN 2015 Modulation of ciliary phosphoinositide content regulates trafficking and Sonic hedgehog signaling output. Dev. Cell 34 338–350

    Article  Google Scholar 

  • Corcoran RB and Scott MP 2006 Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl. Acad. Sci. 103 8408–8413

    Article  CAS  Google Scholar 

  • Croker JA, Ziegenhorn SL and Holmgren RA 2006 Regulation of the Drosophila transcription factor, Cubitus interruptus, by two conserved domains. Dev. Biol. 291 368–381

    Article  CAS  Google Scholar 

  • Dickman DK, Horne JA, Meinertzhagen IA and Schwarz TL 2005 A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 123 521–533

    Article  CAS  Google Scholar 

  • Dong Y, Gou Y, Li Y, Liu Y and Bai J 2015 Synaptojanin cooperates in vivo with endophilin through an unexpected mechanism. Elife 2015 e05660

    Article  Google Scholar 

  • Felsenfeld AL and Kennison JA 1995 Positional signaling by hedgehog in Drosophila imaginal disc development. Development 121 1–10

    CAS  PubMed  Google Scholar 

  • Garcia-Gonzalo FR, Phua SC, Roberson EC, Garcia G, Abedin M, Schurmans S, Inoue T and Reiter JF 2015 Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev. Cell 34 400–409

    Article  CAS  Google Scholar 

  • Guo S, Stolz LE, Lemrow SM, York JD and Carolina N 1999 SAC1-like domains of yeast SAC1, INP52, and INP53 and of human Synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274 12990–12995

    Article  CAS  Google Scholar 

  • Hersh BM and Carroll SB 2005 Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development 132 1567–1577

    Article  CAS  Google Scholar 

  • Housden BE and Perrimon N 2014 Spatial and temporal organization of signaling pathways. Trends Biochem. Sci. 39 457–464

    Article  CAS  Google Scholar 

  • Ibrahim DM, Biehs B, Kornberg TB and Klebes A 2013 Microarray comparison of anterior and posterior Drosophila wing imaginal disc cells identifies novel wing genes. G3 (Bethesda) 3 1353–1362

    Article  Google Scholar 

  • Jia J, Tong C, Wang B, Luo L and Jiang J 2004 Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase-A and casein kinase I. Nature 432 1045–1050

    Article  CAS  Google Scholar 

  • Jiang K, Liu Y, Fan J, Zhang J, Li XA, Evers BM, Zhu H and Jia J 2016 PI(4)P promotes phosphorylation and conformational change of Smoothened through interaction with its C-terminal tail. PLoS Biol. 14 e1002375

    Article  Google Scholar 

  • Khaliullina H, Panáková D, Eugster C, Riedel F, Carvalho M and Eaton S 2009 Patched regulates Smoothened trafficking using lipoprotein-derived lipids. Development 136 4111–4121

    Article  CAS  Google Scholar 

  • Kim K, Vinayagam A and Perrimon N 2014 A rapid genome-wide MicroRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep. 7 2066–2077

    Article  CAS  Google Scholar 

  • Mani M, Lee SY, Lucast L, Cremona O, Di Paolo G, De Camilli P, Ryan T A 2007 The dual phosphatase activity of Synaptojanin1 is required for both efficient synaptic vesicle internalization and re-availability at nerve terminals. Neuron 56 1004–1018

    Article  CAS  Google Scholar 

  • Marada S, Truong A and Ogden SK 2016 The small GTPase Rap1 is a modulator of Hedgehog signaling. Dev. Biol. 409 84–94

    Article  CAS  Google Scholar 

  • Morimura S, Maves L, Chen Y and Hoffmann FM 1996 decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression. Dev. Biol. 177 136–151

    Article  CAS  Google Scholar 

  • Nedelcu D, Liu J, Xu Y, Jao C and Salic A 2013 Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nat. Chem. Biol. 9 557–564

    Article  CAS  Google Scholar 

  • Ogden SK, Ascano M, Stegman MA and Robbins DJ 2004 Regulation of Hedgehog signaling: a complex story. Biochem. Pharmacol. 67 805–814

    Article  CAS  Google Scholar 

  • Ogden SK, Fei DL, Schilling NS, Ahmed YF, Hwa J and Robbins DJ 2008 G protein Gαi functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456 967–70

    Article  CAS  Google Scholar 

  • Pak E and Segal RA 2016 Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy. Dev. Cell 38 333–344

    Article  CAS  Google Scholar 

  • Parks AL, Klueg KM, Stout JR, Muskavitch MA 2000 Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127 1373–1385

    CAS  PubMed  Google Scholar 

  • Piddini E and Vincent JP 2003 Modulation of developmental signals by endocytosis: Different means and many ends. Curr. Opin. Cell Biol. 15 474–481

    Article  CAS  Google Scholar 

  • Strigini M and Cohen SM 2000 Wingless gradient formation in the Drosophila wing. Curr. Biol. 10 293–300

    Article  CAS  Google Scholar 

  • Strutt H, Thomas C, Nakano Y, Stark D, Neave B, Taylor AM and Ingham PW 2001 Mutations in the sterol-sensing domain of patched suggest a role for vesicular trafficking in smoothened regulation. Curr. Biol. 11 608–613

    Article  CAS  Google Scholar 

  • Su Y, Ospina JK, Zhang J, Michelson AP, Schoen AM and Zhu AJ 2011 Sequential phosphorylation of Smoothened transduces graded Hedgehog signaling. Sci. Signal. 4 ra43

    Article  CAS  Google Scholar 

  • Tanimoto H, Itoh S, ten Dijke P and Tabata T 2000 Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5 59–71

    Article  CAS  Google Scholar 

  • Trésaugues L, Silvander C, Flodin S, Welin M, Nyman T, Gräslund S, Hammarström M, Berglund H and Nordlund P 2014 Structural basis for phosphoinositide substrate recognition, catalysis, and membrane interactions in human inositol polyphosphate 5-phosphatases. Structure 22 744–755

    Article  Google Scholar 

  • van den Heuvel M and Ingham P W 1996 “Smoothening” the path for hedgehogs. Trends Cell Biol. 6 451–453

    Article  Google Scholar 

  • Vanhauwaert R, Kuenen S, Masius R, Bademosi A, Manetsberger J, Schoovaerts N, Bounti L, Gontcharenko S et al. 2017 The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. EMBO J. 36 1392–1411

    Article  CAS  Google Scholar 

  • Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, Mehta SQ, Cao Y et al. 2003 Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40 733–748

    Article  CAS  Google Scholar 

  • Yavari A, Nagaraj R, Owisu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott MP and Banerjee U 2011 Role of lipid metabolism in Smoothened de-repressioon in Hedgehog signaling. Dev. Cell 19 54–65

    Article  Google Scholar 

Download references

Acknowledgements

Stocks obtained from TRiP at Harvard Medical School (NIH/NIGMS R01-GM084947), Bloomington Drosophila Research Centre (NIH P40OD018537) and Kyoto stock centre and monoclonal antibodies obtained from the Developmental Studies Hybridoma Bank were used in this study. Imaging was performed at IISER–Pune microscopy facility. I thank Dr. Hugo Bellen for anti-Synj antibodies and Dr. Tom Schwarz for UAS-Synj fly stock; Drs. L. S. Shashidhara and Girish Deshpande for their suggestions and critical comments on the manuscript and Jaimin Bhatt for technical help. This work was done in Dr. L. S. Shashidhara’s lab with funding from Wellcome-DBT India Alliance Early Career Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shital Sarah Ahaley.

Additional information

Communicated by Rakesh K Mishra.

Corresponding editor: Rakesh K Mishra

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahaley, S.S. Synaptojanin regulates Hedgehog signalling by modulating phosphatidylinositol 4-phosphate levels. J Biosci 43, 867–876 (2018). https://doi.org/10.1007/s12038-018-9799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9799-5

Keywords

Navigation