Skip to main content
Log in

Recent developments in nucleobase cation symporter-1 (NCS1) family transport proteins from bacteria, archaea, fungi and plants

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The nucleobase cation symporter-1 (NCS1) family of secondary active transport proteins comprises over 2500 sequenced members from bacteria, archaea, fungi and plants. NCS1 proteins use a proton or sodium gradient to drive inward cellular transport of purine and pyrimidine nucleobases and nucleosides, hydantoins and related compounds. The structural organization, substrate binding residues and molecular mechanism of NCS1 proteins are defined by crystal structures of sodium-coupled hydantoin transporter, Mhp1. Plant proteins are most closely related to bacterial/archaeal proteins and the distinct Fur-type and Fcy-type fungal proteins and plant proteins originated through independent horizontal transfers from prokaryotes. Analyses of 25 experimentally characterized proteins reveal high substrate specificity in bacterial proteins, distinct non-overlapping specificities in Fur-type and Fcy-type fungal proteins and broad specificity in plant proteins. Possible structural explanations are identified for differences in substrate specificity between bacterial proteins, whilst specificities of other proteins cannot be predicted by simple sequence comparisons. Specificity appears to be species specific and determined by combinations of effects dictated by multiple residues in the major substrate binding site and gating domains. This is an exploratory research review of evolutionary relationships, function and structural organization, molecular mechanism and origins of substrate specificity in NCS1 proteins and avenues of future direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Adelman JL, Dale AL, Zwier MC, Bhatt D, Chong LT, Zuckerman DM and Grabe M 2011 Simulations of the alternating access mechanism of the sodium symporter Mhp1. Biophys. J. 101 2399–2407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amillis S, Hamari Z, Roumelioti K, Scazzocchio C and Diallinas G 2007 Regulation of expression and kinetic modeling of substrate interactions of a uracil transporter in Aspergillus nidulans. Mol. Membr. Biol. 24 206–214

    Article  PubMed  CAS  Google Scholar 

  • Belenky PA, Moga TG and Brenner C 2008 Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. J. Biol. Chem. 283 8075–8079

    Article  PubMed  CAS  Google Scholar 

  • Blum HE 2017 The human microbiome. Adv. Med. Sci. 62 414–420

    Article  PubMed  Google Scholar 

  • Bröer S and Palacín M 2011 The role of amino acid transporters in inherited and acquired diseases. Biochem. J. 436 193–211

    Article  PubMed  CAS  Google Scholar 

  • Cabrita MA, Baldwin SA, Young JD and Cass CE 2002 Molecular biology and regulation of nucleoside and nucleobase transporter proteins in eukaryotes and prokaryotes. Biochem. Cell Biol. 80 623–638

    Article  PubMed  CAS  Google Scholar 

  • Calabrese AN, Jackson SM, Jones LN, Beckstein O, Heinkel F, Gsponer J, Sharples D, Sans M, Kokkinidou M, Pearson AR, Radford SE, Ashcroft AE and Henderson PJF 2017 Topological dissection of the membrane transport protein Mhp1 derived from cysteine accessibility and mass spectrometry. Anal. Chem. 89 8844–8852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YN, Lo HJ, Wu CC, Ko HC, Chang TP and Yang YL 2011 Loss of heterozygosity of FCY2 leading to the development of flucytosine resistance in Candida tropicalis. Antimicrob. Agents Chemother. 55 2506–2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danielsen S, Boyd D and Neuhard J 1995 Membrane topology analysis of the Escherichia coli cytosine permease. Microbiology 141 2905–2913

    Article  PubMed  CAS  Google Scholar 

  • Danielsen S, Kilstrup M, Barilla K, Jochimsen B and Neuhard J 1992 Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase. Mol. Microbiol. 6 1335–1344

    Article  PubMed  CAS  Google Scholar 

  • de Koning H and Diallinas G 2000 Nucleobase transporters (review). Mol. Membr. Biol. 17 75–94

    Article  PubMed  Google Scholar 

  • Diallinas G and Gournas C 2008 Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic systems. Channels (Austin) 2 363–372

    Article  Google Scholar 

  • Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM and Abramson J 2008 The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321 810–814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH and Rudnick G 2008 Mechanism for alternating access in neurotransmitter transporters. Proc. Natl. Acad. Sci. U. S. A. 105 10338–10343

    Article  PubMed  PubMed Central  Google Scholar 

  • Frillingos S 2012 Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ. Int. J. Biochem. Mol. Biol. 3 250–272

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gether U, Andersen PH, Larsson OM and Schousboe A 2006 Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol. Sci. 27 375–383

    Article  PubMed  CAS  Google Scholar 

  • Goudela S, Karatza P, Koukaki M, Frillingos S and Diallinas G 2005 Comparative substrate recognition by bacterial and fungal purine transporters of the NAT/NCS2 family. Mol. Membr. Biol. 22 263–275

    Article  PubMed  CAS  Google Scholar 

  • Gournas C, Papageorgiou I and Diallinas G 2008 The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Mol. Biosyst. 4 404–416

    Article  PubMed  CAS  Google Scholar 

  • Gouveia-Oliveira R, Sackett PW and Pedersen AG 2007 MaxAlign: maximizing usable data in an alignment. BMC Bioinformatics 8 312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W and Gascuel O 2010 New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59 307–321

    Article  PubMed  CAS  Google Scholar 

  • Guindon S and Gascuel O 2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 696–704

    Article  PubMed  Google Scholar 

  • Hamari Z, Amillis S, Drevet C, Apostolaki A, Vágvölgyi C, Diallinas G and Scazzocchio C 2009 Convergent evolution and orphan genes in the Fur4p-like family and characterization of a general nucleoside transporter in Aspergillus nidulans. Mol. Microbiol. 73 43–57

    Article  PubMed  CAS  Google Scholar 

  • Jack DL, Paulsen IT and Saier MH 2000 The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146 1797–1814

    Article  PubMed  CAS  Google Scholar 

  • Jackson SM, Patching SG, Ivanova E, Simmons KJ, Weyand S, Shimamura T, Brueckner F, Suzuki S, Iwata S, Sharples DJ, Baldwin SA, Sansom MPS, Beckstein O, Cameron A and Henderson PJF 2013 Mhp1, the Na(+)-hydantoin membrane transport protein; in Encyclopedia of biophysics (ed) GCK Roberts (Springer) pp 1514–1521

  • Karatza P and Frillingos S 2005 Cloning and functional characterization of two bacterial members of the NAT/NCS2 family in Escherichia coli. Mol. Membr. Biol. 22 251–261

    Article  PubMed  CAS  Google Scholar 

  • Kazmier K, Claxton DP and Mchaourab HS 2016 Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr. Opin. Struct. Biol. 45 100–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazmier K, Sharma S, Islam SM, Roux B and Mchaourab HS 2014 Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1. Proc. Natl. Acad. Sci. U. S. A. 111 14752–14757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kraupp M and Marz R 1995 Nucleobase and nucleoside transport in mammalian cells. Wien. Klin. Wochenschr. 107 677–680

    PubMed  CAS  Google Scholar 

  • Krypotou E, Evangelidis T, Bobonis J, Pittis AA, Gabaldón T, Scazzocchio C, Mikros E and Diallinas G 2015a Origin, diversification and substrate specificity in the family of NCS1/FUR transporters. Mol. Microbiol. 96 927–950

    Article  PubMed  CAS  Google Scholar 

  • Krypotou E, Kosti V, Amillis S, Myrianthopoulos V, Mikros E and Diallinas G 2012 Modeling, substrate docking, and mutational analysis identify residues essential for the function and specificity of a eukaryotic purine-cytosine NCS1 transporter. J. Biol. Chem. 287 36792–36803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krypotou E, Scazzocchio C and Diallinas G 2015b Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine-uric acid transporter and an intrinsically misfolded polypeptide. Fungal Genet. Biol. 75 56–63

    Article  PubMed  CAS  Google Scholar 

  • Letunic I and Bork P 2016 Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44 W242–W245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd-Price J, Abu-Ali G and Huttenhower C 2016 The healthy human microbiome. Genome Med. 8 51

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma P, Patching SG, Ivanova E, Baldwin JM, Sharples D, Baldwin SA and Henderson PJ 2016 Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity. Microbiology 162 823–836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minton JA, Rapp M, Stoffer AJ, Schultes NP and Mourad GS 2016 Heterologous complementation studies reveal the solute transport profiles of a two-member nucleobase cation symporter 1 (NCS1) family in Physcomitrella patens. Plant Physiol. Biochem. 100 12–17

    Article  PubMed  CAS  Google Scholar 

  • Moreland JL, Gramada A, Buzko OV, Zhang Q and Bourne PE 2005 The molecular biology toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinf. 6 21

    Article  CAS  Google Scholar 

  • Mourad GS, Tippmann-Crosby J, Hunt KA, Gicheru Y, Bade K, Mansfield TA and Schultes NP 2012 Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis. FEBS Lett. 586 1370–1378

    Article  PubMed  CAS  Google Scholar 

  • Paluszynski JP, Klassen R, Rohe M and Meinhardt F 2006 Various cytosine/adenine permease homologues are involved in the toxicity of 5-fluorocytosine in Saccharomyces cerevisiae. Yeast 23 707–715

    Article  PubMed  CAS  Google Scholar 

  • Pantazopoulou A and Diallinas G 2007 Fungal nucleobase transporters. FEMS Microbiol. Rev. 31 657–675

    Article  PubMed  CAS  Google Scholar 

  • Patching SG 2009 Synthesis of highly pure 14C-labelled DL-allantoin and 13C NMR analysis of labelling integrity. J. Label. Compd. Radiopharm. 52 401–404

    Article  CAS  Google Scholar 

  • Patching SG 2011 Efficient syntheses of 13C- and 14C-labelled 5-benzyl and 5-indolylmethyl L-hydantoins. J. Label. Compd. Radiopharm. 54 110–114

    CAS  Google Scholar 

  • Patching SG 2017 Synthesis, NMR analysis and applications of isotope-labelled hydantoins. J. Diagn. Imaging Ther. 4 3–26

    Article  Google Scholar 

  • Patching SG, Edara S, Ma P, Nakayama J, Hussain R, Siligardi G and Phillips-Jones MK 2012 Interactions of the intact FsrC membrane histidine kinase with its pheromone ligand GBAP revealed through synchrotron radiation circular dichroism. Biochim. Biophys. Acta – Biomembr. 1818 1595–1602

  • Qi F and Turnbough CL Jr 1995 Regulation of codBA operon expression in Escherichia coli by UTP-dependent reiterative transcription and UTP-sensitive transcriptional start site switching. J. Mol. Biol. 254 552–565

    Article  PubMed  CAS  Google Scholar 

  • Rapp M, Schein J, Hunt KA, Nalam V, Mourad GS and Schultes NP 2016 The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility. Protoplasma 253 611–623

    Article  PubMed  CAS  Google Scholar 

  • Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V and Ziegler C 2009 Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458 47–52

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Yen MR, Noto K, Tamang DG and Elkan C 2009 The transporter classification database: recent advances. Nucleic Acids Res. 37 D274–D278

    Article  PubMed  CAS  Google Scholar 

  • Schein JR, Hunt KA, Minton JA, Schultes NP and Mourad GS 2013 The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile. Plant Physiol. Biochem. 70 52–60

    Article  PubMed  CAS  Google Scholar 

  • Schulze S, Köster S, Geldmacher U, Terwisscha van Scheltinga AC and Kühlbrandt W 2010 Structural basis of Na(+)-independent and cooperative substrate/product antiport in CaiT. Nature 467 233–236

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI and Kunze R 2003 ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131 16–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Y 2013 Common folds and transport mechanisms of secondary active transporters. Annu. Rev. Biophys. 42 51–72

    Article  PubMed  CAS  Google Scholar 

  • Shimamura T, Yajima S, Suzuki S, Rutherford NG, O’Reilly J, Henderson PJ and Iwata S 2009 Crystallization of the hydantoin transporter Mhp1 from Microbacterium liquefaciens. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 1172–1174

    Article  CAS  Google Scholar 

  • Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MS, Iwata S, Henderson PJ and Cameron AD 2010 Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328 470–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD and Higgins DG 2011 Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7 539

    Article  PubMed  PubMed Central  Google Scholar 

  • Siligardi G, Hussain R, Patching SG and Phillips-Jones MK 2014 Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy. Biochim. Biophys. Acta - Biomembr. 1838 34–42

    Article  CAS  Google Scholar 

  • Simmons KJ, Jackson SM, Brueckner F, Patching SG, Beckstein O, Ivanova E, Geng T, Weyand S, Drew D, Lanigan J, Sharples DJ, Sansom MS, Iwata S, Fishwick CW, Johnson AP, Cameron AD and Henderson PJ 2014 Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J. 33 1831–1844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singleton CK 1997 Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene 199 111–121

    Article  PubMed  CAS  Google Scholar 

  • Sioupouli G, Lambrinidis G, Mikros E, Amillis S and Diallinas G 2017 Cryptic purine transporters in Aspergillus nidulans reveal the role of specific residues in the evolution of specificity in the NCS1 family. Mol. Microbiol. 103 319–332

    Article  PubMed  CAS  Google Scholar 

  • Stolz J and Vielreicher M 2003 Tpn1p, the plasma membrane vitamin B6 transporter of Saccharomyces cerevisiae. J. Biol. Chem. 278 18990–18996

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S and Henderson PJ 2006 The hydantoin transport protein from Microbacterium liquefaciens. J. Bacteriol. 188 3329–3336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki S, Takenaka Y, Onishi N and Yokozeki K 2005 Molecular cloning and expression of the hyu genes from Microbacterium liquefaciens AJ 3912, responsible for the conversion of 5-substituted hydantoins to alpha-amino acids, in Escherichia coli. Biosci. Biotechnol. Biochem. 69 1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Bai L, Wang WH and Jiang T 2010 Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nat. Struct. Mol. Biol. 17 492–496

    Article  PubMed  CAS  Google Scholar 

  • Vastermark A, Wollwage S, Houle ME, Rio R and Saier MH Jr 2014 Expansion of the APC superfamily of secondary carriers. Proteins 82 2797–2811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vickers MF, Yao SY, Baldwin SA, Young JD and Cass CE 2000 Nucleoside transporter proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes. J. Biol. Chem. 275 25931–25938

    Article  PubMed  CAS  Google Scholar 

  • Vlanti A and Diallinas G 2008 The Aspergillus nidulans FcyB cytosine-purine scavenger is highly expressed during germination and in reproductive compartments and is downregulated by endocytosis. Mol. Microbiol. 68 959–977

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Yao M, Lv L, Ling Z and Li L 2017 The human microbiota in health and disease. Engineering 3 71–82

    Article  Google Scholar 

  • Weber E, Rodriguez C, Chevallier MR and Jund R 1990 The purine-cytosine permease gene of Saccharomyces cerevisiae: primary structure and deduced protein sequence of the FCY2 gene product. Mol. Microbiol. 4 585–596

    Article  PubMed  CAS  Google Scholar 

  • Weyand S, Ma P, Saidijam M, Baldwin J, Beckstein O, Jackson S, Suzuki S, Patching SG, Shimamura T, Sansom MSP, Iwata S, Cameron AD, Baldwin SA and Henderson PJF 2010 The Nucleobase-Cation-Symporter-1 family of membrane transport proteins; in Handbook of metalloproteins (ed) A Messerschmidt, Part 11 (Chichester: John Wiley and Sons).

  • Weyand S, Shimamura T, Beckstein O, Sansom MS, Iwata S, Henderson PJ and Cameron AD 2011 The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1. J. Synchrotron Radiat. 18 20–23

    Article  PubMed  CAS  Google Scholar 

  • Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PC, Iwata S, Henderson PJ and Cameron AD 2008 Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322 709–713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Witz S, Panwar P, Schober M, Deppe J, Pasha FA, Lemieux MJ and Möhlmann T 2014 Structure-function relationship of a plant NCS1 member – homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis. PLoS One 9 e91343

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, Wakabayashi ST and Saier MH Jr 2012 The amino acid-polyamine-organocation superfamily. J. Mol. Microbiol. Biotechnol. 22 105–113

    Article  PubMed  CAS  Google Scholar 

  • Wright EM 2013 Glucose transport families SLC5 and SLC50. Mol. Aspects Med. 34 183–196

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y and Gouaux E 2005 Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437 215–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Diamond Light Source Ltd (Oxfordshire, UK) for instrument time on synchrotron radiation circular dichroism Beamline B23 with technical assistance from Giuliano Siligardi, Rohanah Hussain and Tamás Jávorfi. The author reports no potential conflicts of interest. This work was supported by the EU EDICT consortium (contract 201924), the BBSRC (grant numbers BB/C51725X/1 and BB/G020043/1) and the University of Leeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G Patching.

Additional information

Communicated by Amitabha Chattopadhyay.

Corresponding editor: Amitabha Chattopadhyay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patching, S.G. Recent developments in nucleobase cation symporter-1 (NCS1) family transport proteins from bacteria, archaea, fungi and plants. J Biosci 43, 797–815 (2018). https://doi.org/10.1007/s12038-018-9780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9780-3

Keywords

Navigation