Skip to main content

Advertisement

Log in

Fluorescence microscopy applied to intracellular transport by microtubule motors

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Long-distance transport of many organelles inside eukaryotic cells is driven by the dynein and kinesin motors on microtubule filaments. More than 30 years since the discovery of these motors, unanswered questions include motor–organelle selectivity, structural determinants of processivity, collective behaviour of motors and track selection within the complex cytoskeletal architecture, to name a few. Fluorescence microscopy has been invaluable in addressing some of these questions. Here we present a review of some efforts to understand these sub-microscopic machines using fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aoki T, Tomishige M and Ariga T 2013 Single molecule FRET observation of kinesin-1’s head-tail interaction on microtubule. Biophysics 9 149–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arimoto M, Koushika SP, Choudhary BC, Li C, Matsumoto K and Hisamoto N 2011 The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J. Neurosci. 31 2216–2224

    Article  PubMed  CAS  Google Scholar 

  • Asenjo AB and Sosa H 2009 A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl. Acad. Sci. USA 106 5657–5662

    Article  PubMed  PubMed Central  Google Scholar 

  • Bálint Š, Verdeny Vilanova I, Sandoval Álvarez Á and Lakadamyali M 2013 Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc. Natl. Acad. Sci. 110 3375–3380

    Article  PubMed  Google Scholar 

  • Benoit MPMH and Sosa H 2018 Use of single molecule fluorescence polarization microscopy to study protein conformation and dynamics of kinesin–microtubule complexes; in Single molecule analysis: methods and protocols (ed) EJG Peterman (New York NY: Springer) pp 199–216

  • Blasius TL, Reed N, Slepchenko BM and Verhey KJ 2013 Recycling of kinesin-1 motors by diffusion after transport. PLOS ONE 8 e76081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butkevich AN, Ta H, Ratz M, Stoldt S, Jakobs S, Belov VN and Hell SW 2018 Two-color 810 nm STED nanoscopy of living cells with endogenous SNAP-tagged fusion proteins. ACS Chem. Biol. 13 475–480

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Hoppe AD, Swanson JA and Verhey KJ 2007 Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J. Cell Biol. 176 51–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai D, McEwen DP, Martens JR, Meyhofer E and Verhey KJ 2009 Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLOS Biol. 7 e1000216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choudhary B, Kamak M, Ratnakaran N, Kumar J, Awasthi A, Li C, Nguyen K, Matsumoto K, Hisamoto N and Koushika SP 2017 UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes. PLOS Gene. 13 1–25

    Google Scholar 

  • Corthésy-Theulaz I, Pauloin A and Pfeffer SR 1992 Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell Biol. 118 1333–1345

    Article  PubMed  Google Scholar 

  • Dahlström AB, Pfister KK and Brady ST 1991 The axonal transport motor ‘kinesin’ is bound to anterogradely transported organelles: quantitative cytofluorimetric studies of fast axonal transport in the rat. Acta Physiol. Scand. 141 469–476

    Article  PubMed  Google Scholar 

  • Danquah JO, Botchway S, Jeshtadi A and King LA 2012 Direct interaction of baculovirus capsid proteins VP39 and EXON0 with kinesin-1 in insect cells determined by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy. J. Virol. 86 844–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeWitt MA, Chang AY, Combs PA and Yildiz A 2012 Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335 221–225

    Article  PubMed  CAS  Google Scholar 

  • Dey S, Banker G and Ray K 2017 Anterograde transport of Rab4-associated vesicles regulates synapse organization in Drosophila. Cell Rep. 18 2452–2463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit R, Ross JL, Goldman YE and Holzbaur ELF 2008 Differential regulation of dynein and kinesin motor proteins by tau. Science 319 1086–1089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ems-McClung SC, Hainline SG, Devare J, Zong H, Cai S, Carnes SK, Shaw SL and Walczak CE 2013 Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association. Curr. Biol. 23 2491–2499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fath KR, Trimbur GM and Burgess DR 1994 Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells. J. Cell Biol. 126 661–675

    Article  PubMed  CAS  Google Scholar 

  • Fath KR, Trimbur GM and Burgess DR 1997 Molecular motors and a spectrin matrix associate with golgi membranes in vitro. J. Cell Biol. 139 1169–1181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert SP, Webb MR, Brune M, Johnson KA 1995a Pathway of processive ATP hydrolysis by kinesin. Nature 373 671–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert SP and Johnson KA 1995b Pre-steady-state kinetics of the microtubule • kinesin ATPase. Biophys. J. 68 357s–357s

    Google Scholar 

  • Gilbert SP and Johnson KA 1994 Pre-steady-state kinetics of the microtubule.cntdot.kinesin ATPase. Biochemistry 33 1951–1960

    Article  PubMed  CAS  Google Scholar 

  • Grafstein B and Forman DS 1980 Intracellular transport in neurons Physiol Rev 60 1167–1283

    Article  PubMed  CAS  Google Scholar 

  • Grover R, Fischer J, Schwarz FW, Walter WJ, Schwille P and Diez S 2016. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity. Proc. Natl. Acad. Sci. USA 113 E7185–E7193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurel PS, Hatch AL and Higgs HN 2014 Connecting the cytoskeleton to the endoplasmic reticulum and Golgi. Curr. Biol. 24 R660–R672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammond JW, Cai D, Blasius TL, Li Z, Jiang Y, Jih GT, Meyhofer E and Verhey KJ 2009 Mammalian kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLOS Biol. 7 pe1000072

    Article  CAS  Google Scholar 

  • Hancock WO 2014 Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol 15 615–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendricks AG, Perlson E, Ross JL, Schroeder HW, Tokito M and Holzbaur ELF 2010 Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 20 697–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirokawa N, Sato-Yoshitake R, Yoshida T and Kawashima T 1990 Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J. Cell Biol. 111 1027–1037

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Sato-Yoshitake R, Kobayashi N, Pfister KK, Bloom GS and Brady ST 1991 Kinesin associates with anterogradely transported membranous organelles in vivo. J Cell Biol 114 295–302

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N and Tanaka Y 2015 Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 334 16–25

    Article  PubMed  CAS  Google Scholar 

  • Hollenbeck PJ 1989 The distribution, abundance and subcellular localization of kinesin. J. Cell Biol. 108 2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Hua W, Chung J and Gelles J 2002 Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements Science 295 844–848

    Article  PubMed  CAS  Google Scholar 

  • Jenkins B, Decker H, Bentley M, Luisi J and Banker G 2012 A novel split kinesin assay identifies motor proteins that interact with distinct vesicle populations. J. Cell Biol. 198 749–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapitein LC, Schlager MA, Van Der Zwan WA, Wulf PS, Keijzer N and Hoogenraad CC 2010 Probing intracellular motor protein activity using an inducible cargo trafficking assay. Biophys. J. 99 2143–2152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kon T, Mogami T, Ohkura R, Nishiura M and Sutoh K 2005 ATP hydrolysis cycle–dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol 12 513

    Article  PubMed  CAS  Google Scholar 

  • Korten T, Nitzsche B, Gell C, Ruhnow F, Leduc C and Diez S 2011 Fluorescence imaging of single kinesin motors on immobilized microtubules; in Single molecule analysis: methods and protocols (eds) EJG Peterman and GJL Wuite (Totowa, NJ: Humana Press) pp 121–137

    Chapter  Google Scholar 

  • Koster G, VanDuijn M, Hofs B and Dogterom M 2003 Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc. Natl. Acad. Sci. USA 100 15583–15588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koushika SP, Schaefer AM, Vincent R, Willis JH, Bowerman B and Nonet ML 2004 Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J. Neurosci. 24 3907–3916

    Article  PubMed  CAS  Google Scholar 

  • Kumar J, Choudhary BC, Metpally R, Zheng Q, Nonet ML, Ramanathan S, Klopfenstein DR and Koushika SP 2010 The Caenorhabditis elegans kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLOS Genet. 6 e1001200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leduc C, Campàs O, Zeldovich KB, Roux A, Jolimaitre P, Bourel-Bonnet L, Goud B, Joanny J-F, Bassereau P and Prost J 2004 Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl. Acad. Sci. USA 101 17096–17101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J-R, Shin H, Ko J, Choi J, Lee H and Kim E 2003 Characterization of the movement of the kinesin motor KIF1A in living cultured neurons. J. Biol. Chem. 278 2624–2629

    Article  PubMed  CAS  Google Scholar 

  • Ligon LA, Tokito M, Finklestein JM, Grossman FE and Holzbaur ELF 2004 A Direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J. Biol. Chem. 279 19201–19208

    Article  PubMed  CAS  Google Scholar 

  • Lin SX and Collins CA 1992 Immunolocalization of cytoplasmic dynein to lysosomes in cultured cells. J. Cell Sci. 101 125–137

    PubMed  CAS  Google Scholar 

  • Lin SX and Collins CA 1993 Regulation of the intracellular distribution of cytoplasmic dynein by serum factors and calcium. J. Cell Sci. 105 579–588

    PubMed  CAS  Google Scholar 

  • Lippert LG, Dadosh T, Hadden JA, Karnawat V, Diroll BT, Murray CB, Holzbaur ELF, Schulten K, Reck-Peterson SL and Goldman YE 2017 Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proc. Natl. Acad. Sci. USA 114 E4564–E4573

    Article  PubMed  CAS  Google Scholar 

  • Lockhart A, Cross RA and McKillop DFA 1995 ADP release is the rate-limiting step of the MT activated ATPase of non-claret disjunctional and kinesin. FEBS Lett. 368 531–535

    Article  PubMed  CAS  Google Scholar 

  • Mallik R, Rai AK, Barak P, Rai A and Kunwar A 2013 Teamwork in microtubule motors. Trends Cell Biol. 23 575–582

    Article  PubMed  CAS  Google Scholar 

  • Marszalek JR, Weiner JA, Farlow SJ, Chun J and Goldstein LSB 1999 Novel dendritic kinesin sorting identified by different process targeting of two related kinesins: KIF21A and KIF21B. J. Cell Biol. 145 469–479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marya PK, Fraylich PE, Flood CR, Rao R and Eagles PA 1991 Studies using a fluorescent analogue of kinesin. J. Cell. Sci. Supp. 14 139–142

    Article  CAS  Google Scholar 

  • Mori T, Vale RD and Tomishige M 2007 How kinesin waits between steps. Nature 450 750

    Article  PubMed  CAS  Google Scholar 

  • Nakata T, Niwa S, Okada Y, Perez F and Hirokawa N 2011 Preferential binding of a kinesin-1 motor to GTP-tubulin–rich microtubules underlies polarized vesicle transport. J. Cell Biol. 194 245–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakata T and Hirokawa N 2003 Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162 1045–1055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neighbors BW, Williams RC and McIntosh JR 1988 Localization of kinesin in cultured cells. J. Cell Biol. 106 1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Ochs S, Sabri MI and Johnsona J 1969 Fast transport system of materials in mammalian nerve fibers. Science 163 686–687

    Article  PubMed  CAS  Google Scholar 

  • Pathak D and Mallik R 2017 Lipid–motor interactions: soap opera or symphony? Curr. Opin. Cell. Biol. 44 79–85

    Article  PubMed  CAS  Google Scholar 

  • Peterman EJG, Sosa H, Goldstein LSB and Moerner WE 2001 Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules. Biophys. J. 81 2851–2863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfarr CM, Coue M, Grissom PM, Hays TS, Porter ME and McIntosh JR 1990 Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345 263

    Article  PubMed  CAS  Google Scholar 

  • Pfister KK, Wagner MC, Stenoien DL, Brady ST and Bloom GS 1989 Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells J. Cell Biol. 108 1453–1463

    Article  PubMed  CAS  Google Scholar 

  • Pierce DW, Hom-Booher N and Vale RD 1997 Imaging individual green fluorescent proteins. Nature 388 338

    Article  PubMed  CAS  Google Scholar 

  • Pierce DW and Vale RD 1998 Assaying processive movement of kinesin by fluorescence microscopy. Methods Enzym 298 154–171

    Article  CAS  Google Scholar 

  • Pilling AD, Horiuchi D, Lively CM and Saxton WM 2006 Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17 2057–2068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu W, Derr ND, Goodman BS, Villa E, Wu D, Shih W and Reck-Peterson SL 2012 Dynein achieves processive motion using both stochastic and coordinated stepping. Nat. Struct. Mol. Biol. 19 193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman A, Kamal A, Roberts EA and Goldstein LSB 1999 Defective kinesin heavy chain behavior in mouse kinesin light chain mutants. J. Cell Biol. 146 1277–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai A, Pathak D, Thakur S, Singh S, Dubey AK and Mallik R 2016 Dynein clusters into lipid microdomains on phagosomes to drive rapid transport toward lysosomes. Cell 164 722–734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ray K, Perez SE, Yang Z, Xu J, Ritchings BW, Steller H and Goldstein LSB 1999 Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila. J. Cell Biol. 147 507–518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roghi C and Allan VJ 1999 Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J Cell Sci 112 4673–4685

    PubMed  CAS  Google Scholar 

  • Rosenfeld SS, Xing J, Jefferson GM, Cheung HC and King PH 2002 Measuring kinesin’s first step. J. Biol. Chem. 277 36731–36739

    Article  PubMed  CAS  Google Scholar 

  • Ross JL, Shuman H, Holzbaur ELF and Goldman YE 2008 Kinesin and dynein–dynactin at intersecting microtubules: motor density affects dynein function Biophys. J. 94 3115–3125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadananda A, Hamid R, Doodhi H, Ghosal D, Girotra M, Jana SC and Ray K 2012 Interaction with a Kinesin-2 tail propels choline acetyltransferase flow towards synapse. Traffic 13 979–991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadhu A and Taylor EW 1992 A kinetic study of the kinesin ATPase. J. Biol. Chem. 267 11352–11359

    PubMed  CAS  Google Scholar 

  • Scholey JM, Porter ME, Grissom PM and McIntosh JR 1985 Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle Nature 318 483

    Article  PubMed  CAS  Google Scholar 

  • Schuster M, Lipowsky R, Assmann M-A, Lenz P and Steinberg G 2011 Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc. Natl. Acad. Sci. USA 108 3618–3623

    Article  PubMed  PubMed Central  Google Scholar 

  • Schvartz T, Aloush N, Goliand I, Segal I, Nachmias D, Arbely E and Elia N 2017 Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging. Mol. Biol. Cell 28 2747–2756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soppina V, Norris SR, Dizaji AS, Kortus M, Veatch S, Peckham M and Verhey KJ 2014 Dimerization of mammalian kinesin-3 motors results in superprocessive motion. Proc. Natl. Acad. Sci. USA 111 5562–5567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sosa H, Peterman EJG, Moerner WE and Goldstein LSB 2001 ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Mol. Biol. 8 540

    Article  CAS  Google Scholar 

  • Steuer ER, Wordeman L, Schroer TA and Sheetz MP 1990 Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345 266

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ and Block SM 1993 Direct observation of kinesin stepping by optical trapping interferometry. Nature 365 721

    Article  PubMed  CAS  Google Scholar 

  • Toseland CP 2014 Fluorescence to study the ATPase mechanism of motor proteins; in Fluorescent methods for molecular motors (eds) CP Toseland and N Fili (Basel: Springer) pp 67–86

    Google Scholar 

  • Vaisberg EA, Grissom PM and McIntosh JR 1996 Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 133 831–842

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y and Yanagida T 1996 Direct observation of single kinesin molecules moving along microtubules. Nature 380 451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallee RB, McKenney RJ and Ori-McKenney KM 2012 Multiple modes of cytoplasmic dynein regulation Nat. Cell Biol. 14 224–230

    Article  PubMed  CAS  Google Scholar 

  • Verbrugge S, Lechner B, Woehlke G and Peterman EJG 2009 Alternating-site mechanism of kinesin-1 characterized by single-molecule FRET using fluorescent ATP analogues. Biophys. J. 97 173–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdeny-Vilanova I, Wehnekamp F, Mohan N, Álvarez ÁS, Borbely JS, Otterstrom JJ, Lamb DC and Lakadamyali M 2017 3D motion of vesicles along microtubules helps them to circumvent obstacles in cells. J. Cell Sci. pjcs.201178

  • Wright BD, Henson JH, Wedaman KP, Willy PJ, Morand JN and Scholey JM 1991 Subcellular localization and sequence of sea urchin kinesin heavy chain: evidence for its association with membranes in the mitotic apparatus and interphase cytoplasm. J. Cell Biol. 113 817–833

    Article  PubMed  CAS  Google Scholar 

  • Yang Z and Goldstein LSB 1998 Characterization of the KIF3C neural kinesin-like motor from mouse. Mol. Biol. Cell 9 249–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yildiz A, Tomishige M, Gennerich A and Vale RD 2017 Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134 1030–1041

    Article  CAS  Google Scholar 

  • Yildiz A and Selvin PR 2005 Fluorescence imaging with one nanometer accuracy:  application to molecular motors. Acc. Chem. Res 38 574–582

    Article  PubMed  CAS  Google Scholar 

  • Zajac AL, Goldman YE, Holzbaur ELF and Ostap EM 2013 Local cytoskeletal and organelle interactions impact molecular-motor-driven early endosomal trafficking. Curr. Biol. 23 1173–1180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y and Sperry AO 2004 Comparative analysis of two C-terminal kinesin motor proteins: KIFC1 and KIFC5A. Cell Motil. Cytoskelet. 58 213–230

    Article  CAS  Google Scholar 

  • Zhou HM, Brust-Mascher I and Scholey JM 2001. Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along Neuronal Processes in Livingand Caenorhabditis elegans J. Neurosci. 21 3749–3755

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Zhang W, Elnatan D and Huang B 2012 Faster STORM using compressed sensing. Nat. Methods 9 721–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

RM acknowledges funding from a Wellcome Trust International Senior Research Fellowship (grant WT079214MA) and a Senior fellowship from the Wellcome Trust – Department of Biotechnology, India, alliance (grant IA/S/11/2500255). We apologize to our colleagues whose work we could not discuss due to lack of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roop Mallik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, D., Thakur, S. & Mallik, R. Fluorescence microscopy applied to intracellular transport by microtubule motors. J Biosci 43, 437–445 (2018). https://doi.org/10.1007/s12038-018-9765-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9765-2

Keywords

Navigation