Skip to main content
Log in

Glucohexaose-induced protein phosphatase 2C regulates cell redox status of cucumber seedling

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Protein Phosphatase 2C (PP2C) is an important phosphatase-like protein in eukaryotic organisms that can negatively regulate protein kinase cascade abscisic acid (ABA) signal system through phosphorylation and carry out vital roles in various cell processes. The previous study indicated that the accumulation of reactive oxygen species (ROS) is a part of mechanism of glucohexaose-induced resistance in cucumber cotyledons, and CsPP2C80s might play a crucial role in processes related to ROS produce and signal transduction. To identify the mechanism of CsPP2C80s involved in glucohexaose and ABA signaling regulating cell redox status, the effects of glucohexaose and ROS inhibitor pretreatment on endogenous ABA content and ABA signaling genes expression levels of cucumber seedlings were analysed. These results suggest that cucumber CsPP2C80s are involved in ROS accumulation and ABA signal transduction pathway induced by glucohexaose, CsPP2C80s play a positive regulatory role in process of ABA combined with ABA receptors (PYLs) to activate SNF1-related protein kinases 2 (SnRK2s) and regulate NADPH oxidase to produce extracellular hydrogen peroxide (H2O2), providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in cell redox status induced by glucohexaose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Apel K and Hirt H 2004 Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55 373–399

    Article  CAS  PubMed  Google Scholar 

  • Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J and Blatt MR 1995 Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi1–1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc. Natl. Acad. Sci. USA 92 9520–9524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auh CK and Murphy TM 1995 Plasma membrane redox enzyme is involved in the synthesis of O -2 and H2O2 by Phytophthoraelicitor-stimulated rose cells. Plant Physiol. 107 1241–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertauche N, Leunq J and Giraudat J 1996 Protein phosphatase activity of abscisic acid insensitive 1 (ABI1) protein from Arabidopsis thaliana. Eur. J. Biochem. 241 193–200

    Article  CAS  PubMed  Google Scholar 

  • Bradley DJ, Kjellbom P and Lamb CJ 1992 Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70 21–30

    Article  CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS and Neill SJ 2006 ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45 113–122

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang D, Zhang C, Xia X, Yin W and Tian Q 2015 A putative PP2C-encoding gene negatively regulates ABA signaling in Populus euphratica. PLoS ONE 10(10) e0139466

    Article  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Coaker G, Day B and Staskawicz BJ 2006 Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124 803–814

    Article  CAS  PubMed  Google Scholar 

  • Coello P, Hey SJ and Halford NG 2011 The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J. Exp. Bot. 62 883–893

    Article  CAS  PubMed  Google Scholar 

  • Fan HY, Bao-Ju LI, Chun-Mao L, Tian-Lai LI and Zhou BL 2003 Study on cucumber plant resistance introduced by glucohexaose against pseudoperonospora cubensis disease. Plant Prot. (China) 1 14–16

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, et al. 2003 Reactive oxygen species produced by nadph oxidase regulate plant cell growth. Nature 422 442–446

    Article  CAS  PubMed  Google Scholar 

  • Fuchs S, Grill E, Meskiene I and Schweighofer A 2013 Type 2c protein phosphatases in plants. FEBS J. 280 681–693

    Article  CAS  PubMed  Google Scholar 

  • Gaits F, Shiozaki K and Russell P 1997 Protein phosphatase 2C acts independently of stress-activated kinase cascade to regulate the stress response in fission yeast. J. Biol. Chem. 272 17873–17879

    Article  CAS  PubMed  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N and Giraudat J 1999 ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11 1897–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Z, Prado A, Melzig J, Heisenberg M, Nash HA and Raabe T 2000 Mushroom body defect, a gene involved in the control of neuroblast proliferation in drosophila, encodes a coiled–coil protein. Proc. Natl. Acad. Sci. USA 97 8122–8127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halford NG and Hey SJ 2009 Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem. J. 419 247–259

    Article  CAS  PubMed  Google Scholar 

  • Halford NG 2005 Regulation of carbon and amino acid metabolism: roles of sucrose nonfermenting-1-related prote in kinase-1 and general control nonderepressible-2-related protein kinase. Adv. Bot. Res. 43 93–142

    Article  Google Scholar 

  • Hao Y, Wu C, Zhao D, Thung L, Yu Y and Fan H 2013 Proteomic analysis of glucohexaose induced resistance to downy mildew in Cucumis sativus. Aust. J. Crop Sci. 7 1242–1251

    Google Scholar 

  • Hao Y, Lin C, Fan H, Yu Y, Li N and Chen S 2014 Proteomic analysis of Cucumis sativus cotyledons after glucohexaose treatment as a part of ROS accumulation related resistance mechanism. Proteome Sci. 12 34–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Hey SJ, Byrne E and Halford NG 2010 The interface between metabolic and stress signaling. Ann. Bot. 105 197–203

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T and Shinozaki K 2010 Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 61 1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Vallad GE, Zhang S, Wen A, Balogh B, Figueiredo JFL, Behlau F, Jones JB, et al. 2012 Effect of application frequency and reduced rates of acibenzolar-S-methyl on the field efficacy of induced resistance against bacterial spot on tomato. Plant Disease 96 221–227

    Article  Google Scholar 

  • Jiang MY and Zhang JH 2002 Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic. Res. 36 1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Jia HF, Lu D, Sun JH, Li CL, Xing Y, Qin L and Shen YY 2013 Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J. Exp. Bot. 64 1677–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, et al. 2003 Nadph oxidase atrbohd and atrbohf genes function in ros-dependent aba signaling in Arabidopsis. The EMBO J. 22 2623–2633

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Nguyen V and Schroeder JI 2006 The role of reactive oxygen species in hormonal responses. Plant Physiol. 141 323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F and Giraudat J 1994 Arabidopsis ABA response gene abi1: features of a calcium-modulated protein phosphatase. Science 264 1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Merlot S and Giraudat J 1997 The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phophatases 2C involved in abscisic acid signal transduction. The Plant Cell 9 759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Shi C, Sun D, He Y, Lai C, Lv P, Xiong Y, Zhang L, et al. 2015 The HAB1 PP2C is inhibited by ABA-dependent PYL10 interaction. Sci. rep. 5 10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhu Z and Lv G 2004 Effect of chilling tolerance and active oxygen scavenging system of grafted watermelon stress on low temperature. Appl. Ecol. (China) 15 659–662

    CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A and Grill E 2009 Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324 1064–1068

    CAS  PubMed  Google Scholar 

  • Meinhard M and Grill E 2001 Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett. 508 443–446

    Article  CAS  PubMed  Google Scholar 

  • Meinhard M, Rodriguez PL and Grill E 2002 The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling. Planta 214 775–782

    Article  CAS  PubMed  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A and Giraudat J 2001 The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 25 295–303

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M and Van Breusegem F 2004 Reactive oxygen gene network of plants. Trends Plant Sci. 9 490–498

    Article  CAS  PubMed  Google Scholar 

  • Mori IC and Muto S 1997 Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. Plant Physiol. 113 833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K and Scheel D 1994 High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78 449–460

    Article  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, et al. 2009 Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324 1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI, et al. 2000 Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406 731–734

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A and Grill E 2010 ABA perception and signaling. Trends Plant Sci. 15 395–401

    Article  CAS  PubMed  Google Scholar 

  • Reyes D, Rodriguez D, Gonzalez-Garcia MP, Lorenzo O, Nicolás G, García-Martínez JL and Nicolás C 2006 Overexpression of a protein phosphatase 2C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis. Plant Physiol. 141 1414–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond P, Grunberger S, Paul K, Müller M and Farmer EE 1995 Oligogalacturonide defense signals in plants: Large fragments interact with the plasma membrane in vitro. Proc. Natl. Acad. Sci. USA 92 4145–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N and Samiyappan R 2007 PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot. 26 556–565

    Article  Google Scholar 

  • Schmidt C, Schelle I, Liao YJ and Schroeder JI 1995 Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc. Natl. Acad. Sci. USA 92 9535–9539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp JK, Albersheim P, Ossowski P, Pilotti A, Garegg P and Lindberg B 1984 Comparison of the structures and elicitor activities of a synthetic and a mecelial-wall-derivedHexa (β-D-glucopyranosyl)-D-glucitol. J. Biol. Chem. 259 11341–11345

    CAS  PubMed  Google Scholar 

  • Sheen J 1998 Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. USA 95 975–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel NE, Ji C, Gopalan S, Kuc JA and He SY 1996 Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZ Pss protein. Plant J. 9 431–439

    Article  CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA and Mittler R 2011 Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14 691–699

    Article  CAS  PubMed  Google Scholar 

  • Svalheim Ø and Robertsen B 1993 Elicitation of H2O2 production in cucumber hypocotyl segments by oligo-1, 4-α-D-galacturonides and an oligo-β-glucan preparation from cell walls of Phythophthora megasperma f. sp. Glycinea. Physiol. Plant 88 675–681

    Article  CAS  PubMed  Google Scholar 

  • Szostkirwiez I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF and Christmann A 2010 Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J. 61 25–35

    Article  Google Scholar 

  • Tahtiharju S and Palva T 2001 Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J. 26(4) 461–470

    Article  CAS  PubMed  Google Scholar 

  • Thuerig B, Felix G, Binder A, Boller T and Tamm L 2006 An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signalling pathways. Physiol. Mol. Plant Pathol. 67(3) 180–193

    Google Scholar 

  • Torres MA and Dangl JL 2005 Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8(4) 397–403

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL and Jones JDG 2002 Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99 523–528

    Article  Google Scholar 

  • Torres MA, Jones JD and Dangl JL 2006 Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141 373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tougane K, Komatsu K, Bhyan SB, Sakata Y, Ishizaki K, Yamato KT, Kohchi T and Takezawa D 2010 Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha. Plant Physiol. 152 1529–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashid S, Myougae F, Yamaguchi-Shinozakic K, Ishihamab Y and Hirayamad T 2009 Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. USA 6 17588–17593

    Article  Google Scholar 

  • Vos IA, Verhage A, Schuurink RC, Watt LG, Pieterse CM and Van Wees SC 2013 Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Front. Plant Sci. 4(2) 539

    PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K and Hirayama T 2006 ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 140(1) 115–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG and Doke N 2003 Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15(3) 706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang L, Dong FC, Gao J, Galbraith DW and Song CP 2001 Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol. 126(4) 1438–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Excellent Researcher in University of Liaoning Province (LR2014019) and the Talents Engineering of Liaoning Province Project (2014921040). All the authors are thankful to Prof. J Ning for providing glucohexaose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N Cui or H Y Fan.

Additional information

Corresponding editor: Agepati S Raghavendra

Corresponding editor: Agepati S Raghavendra

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q.M., Yu, Y., Lin, C.M. et al. Glucohexaose-induced protein phosphatase 2C regulates cell redox status of cucumber seedling. J Biosci 43, 117–126 (2018). https://doi.org/10.1007/s12038-018-9738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9738-5

Keywords

Navigation