Skip to main content
Log in

Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Amalaki Rasayana (AR) is a common Ayurvedic herbal formulation of Phyllanthus emblica fruits and some other ingredients, and is used for general good health and healthy aging. We reported it to improve life history traits and to suppress neurodegeneration as well as induced apoptosis in Drosophila. The present study examines responses of Drosophila reared on AR-supplemented food to crowding, thermal or oxidative stresses. Wild-type larvae/flies reared on AR-supplemented food survived the various cell stresses much better than those reared on control food. AR-fed mutant park 13 or DJ-1β Delta93 (Parkinson’s disease model) larvae/flies, however, showed only partial or no protection, respectively, against paraquat-induced oxidative stress, indicating essentiality of DJ-1β for AR-mediated oxidative stress tolerance. AR feeding reduced the accumulation of reactive oxygen species (ROS) and lipid peroxidation even in aged (35-day-old) wild-type flies while enhancing superoxide dismutase (SOD) activity. We show that while Hsp70 or Hsp83 expression under normal or stress conditions was not affected by AR feeding, Hsp27 levels were elevated in AR-fed wild-type control as well as heat-shocked larvae. Therefore, besides the known anti-oxidant activity of Phyllanthus emblica fruits, dietary AR also enhances cellular levels of Hsp27. Our in vivo study on a model organism shows that AR feeding significantly improves tolerance to a variety of cell stresses through reduced ROS and lipid peroxidation on the one hand, and enhanced SOD activity and Hsp27 on the other. The resulting better homeostasis improves life span and quality of organism’s life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adelman R, Saul RL and Ames BN 1988 Genetics oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Natl. Acad. Sci. U. S. A. 85 2706–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya R, Mallik M and Lakhotia SC 2007 Heat shock genes – integrating cell survival and death. J. Biosci. 32 494–610

    Article  Google Scholar 

  • Baker KD and Thummel CS 2007 Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab. 6 247–266

    Article  Google Scholar 

  • Bargale SS, Shashirekha HK and Baragi UC 2014 Anti-aging effect of Amalaki Rasayana in healthy elderly subjects. J. Ayurveda Holist. Med. 2 10–18

    Google Scholar 

  • Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, et al. 2003 DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol. Sci. 24 149–160

    Article  Google Scholar 

  • Borash DJ and Ho GT 2001 Patterns of selection: stress resistance and energy storage in density-dependent populations of Drosophila melanogaster. J. Insect Physiol. 47 1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Botella JA, Bayersdorfer F, Gmeiner F and Schneuwly S 2009 Modelling Parkinson’s disease in Drosophila. Neuromol Med 11 268–280. doi:10.1007/s12017-009-8098-6

  • Britton JS, Lockwood WK, Li L, Cohen SM and Edgar BA 2002 Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions; Dev. Cell. 2 239–249

    CAS  Google Scholar 

  • Calderwood SK, Murshid A and Prince T 2009 The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini-review. Gerontology. 44 440–448

    Google Scholar 

  • Cathcart R, Schwiers E and Ames BN 1983 Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem. 134 111–116

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee UR, Bandyopadhyay SS, Ghosh D, Ghosal PK and Ray B 2011 In vitro anti-oxidant activity, fluorescence quenching study and structural features of carbohydrate polymers from Phyllanthus emblica. Int. J. Biol. Macromol. 49 637–642

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari AA, Seol JW, Kim SJ, Lee YJ, Kang HS, et al. 2007 Reactive oxygen species regulate Bax translocation and mitochondrial transmembrane potential, a possible mechanism for enhanced TRAIL-induced apoptosis by CCCP. Oncol. Rep. 18 71–76

    CAS  PubMed  Google Scholar 

  • Chippindale AK, Chu TJF and Rose MR 1996 Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution. 40 743–766

    Google Scholar 

  • Dwivedi V, Anandan EM, Mony RS, Muraleedharan TS, Valiathan MS, Mutsuddi M and Lakhotia SC 2012 In vivo effects of traditional Ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications. PLoS One. 7, e37113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi V, Tiwary S and Lakhotia SC 2015 Suppression of induced but not developmental apoptosis by Ayurvedic, Amalaki Rasayana and Rasa-Sindoor in Drosophila melanogaster. J. Biosci. 40 281–297

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi V, Tripathi BK, Mutsuddi M and Lakhotia SC 2013 Ayurvedic Amalaki Rasayana and Rasa-Sindoor suppress neurodegeneration in fly models of Huntington’s and Alzheimer’s diseases. Curr. Sci. 104 1711–1723

    Google Scholar 

  • Ekengren S, Tryselius Y, Dushay MS, Liu G, Steiner H and Hultmark D 2001 A humoral stress response in Drosophila. Curr. Biol. 11 1479

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA, Luo J and Cantley LC 2006 The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7 606–619

    Article  CAS  PubMed  Google Scholar 

  • Evgen’ev MB, Garbuz DG and Zatsepina OG 2014 Heat shock proteins and whole body adaptation to extreme environments (Dordrecht Heidelberg New York London: Springer)

    Google Scholar 

  • Faust K, Gehrke S, Yang Y, Yang L, Beal MF and Lu B 2009 Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci. 10 109. doi:10.1186/1471-2202-10-109

    Article  PubMed  PubMed Central  Google Scholar 

  • Feder ME and Hofmann GE 1999 Heat-shock proteins, molecular chaperones, and the stress response, evolutionary and ecological physiology. Annu. Rev. Physiol. 61 243–282

    Article  CAS  PubMed  Google Scholar 

  • Gandhi S and Abramov AY 2012 Mechanism of oxidative stress in neurodegeneration oxidative. Med. Cell. Longevity. Article ID 428010 doi:10.1144/2012/428010

  • Govindarajan R, Vijayakumar M and Pushpangadan P 2004 Antioxidant approach to disease management and the role of 'Rasayana' herbs of Ayurveda. J. Ethnopharmacol. 99 164–178

    Google Scholar 

  • Greene JC, Whitworth AJ, Andrews LA, Parker TJ and Pallanck LH 2005 Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet. 14 799–811

    Article  CAS  PubMed  Google Scholar 

  • Guertin MJ, Petesch SJ, Zobeck KL, Min IM and Lis JT 2010 Drosophila heat shock system as a general model to investigate transcriptional regulation. Cold Spring Harb. Symp. Quant. Biol. 74 1–9

    Article  Google Scholar 

  • Haigis MC and Yankner BA 2015 The aging stress response. Mol. Cell. 40 333–344

    Article  Google Scholar 

  • Hao X, Zhang S, Timakov B and Zhang P 2007 The Hsp27 gene is not required for Drosophila development but its activity is associated with starvation resistance. Cell Stress Chaperones. 12 364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmbeck MA and Rand DM 2014 Dietary fatty acids and temperature modulate mitochondrial function and longevity in Drosophila. J. Gerontol.. doi:10.1093/gerona/glv044

    Google Scholar 

  • Joselin AP, Hewitt SJ, Callaghan SM, Kim RH, ChungY H, Mak TW, et al. 2012 ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Hum. Mol. Genet. 21 4888–4903

    Article  CAS  PubMed  Google Scholar 

  • Kakkar P, Das B and Vishwanathan PN 1984 A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 21 130–132

    CAS  PubMed  Google Scholar 

  • Kasapoglu M and Ozben T 2001 Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp. Gerontol. 36 209–220

    Article  CAS  PubMed  Google Scholar 

  • Khan KH 2009 Roles of Emblica officinalis in medicine, a review. Bot. Res Int. 2 218–228

    CAS  Google Scholar 

  • King AM and MacRae TH 2015 Insect heat shock proteins during stress and diapause. Annu. Rev. Entomol. 60 49–74. doi:10.1146/annurev-ento-011613-162107

    Article  Google Scholar 

  • Krebs RA and Feder ME 1998 Hsp70 and larval thermotolerance in Drosophila melanogaster: how much is enough and when is more too much? J. Insect Physiol. 44 1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Krishnaveni M and Mirunalini S 2010 Therapeutic potential of Phyllanthus emblica (Amla): the Ayurvedic wonder. J. Basic Clin. Physiol. Pharmacol. 21 93–104

    CAS  PubMed  Google Scholar 

  • Lagouge M and Larsson NG 2013 The role of mitochondrial DNA mutations and free radicals in disease and ageing. J. Intern. Med. 273 429–443

    Article  Google Scholar 

  • Lakhotia SC 2013 In-depth basic science studies essential for revival of Ayurveda. Ann. Ayurvedic Med. 2 58–60

    Google Scholar 

  • Lakhotia SC 2016 Ayurvedic biology - an unbiased approach to understand traditional health-care system. Proc Indian Natl. Sci. Acad. 82 1–3

    Google Scholar 

  • Lakhotia SC and Tapadia M 1998 Genetic mapping of the amide response element(s) of the hsrω locus of Drosophila melanogaster. Chromosoma. 107 127–135

    Article  CAS  PubMed  Google Scholar 

  • Lamech LT and Haynes CM 2014 The unpredictability of prolonged activation of stress response pathways. J. Cell Biol. 209 781–787

    Article  Google Scholar 

  • Landis G, Shen J and Tower J 2012 Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging. 4 768–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leopold P and Perrimon N 2007 Drosophila and the genetics of the internal milieu. Nature. 440 186–188

    Article  Google Scholar 

  • Lin HJ, Li Z, Dang XQ, Su WJ, Zhou ZY and Wang LL 2014 Short-term increased expression of the heat shock protein 70 family members during heat shock is positively correlated with basal thermotolerance in the midgut of three strains of the silkworm, Bombyx mori. Afr. Entomol. 22 24–29

    Article  Google Scholar 

  • Lindquist S 1986 The heat-shock response. Annu. Rev. Biochem. 55 1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Chen HD and Lu HG 2012 The relationship between apoptosis and aging. Adv. Biosci. Biotechnol. 3 705–711. doi:10.4236/abb.2012.326091

    Article  Google Scholar 

  • Lushchak AI 2014 Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224 164–174

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjun V, Sriram A, Scialo F and Sanz A 2014 The interplay between mitochondrial protein and iron homeostasis and its possible role in ageing. Exp. Gerontol. 46 123–134

    Article  Google Scholar 

  • Melkani GC, Trujillo AS, Ramos R, Bodmer R, Bernstein SI, et al. 2013 Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet. 9, e1004024. doi:10.1371/journal.pgen.1004024

    Article  PubMed  PubMed Central  Google Scholar 

  • Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, et al. 2005 Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr. Biol. 15 1572–1577

    Article  CAS  PubMed  Google Scholar 

  • Morrow G and Tanguay RM 2003 Heat shock proteins and aging in Drosophila melanogaster. Semin. Cell Dev. Biol. 14 291–299

    Article  CAS  PubMed  Google Scholar 

  • Mueller LD and Barter TT 2015 A model of the evolution of larval feeding rate in Drosophila driven by conflicting energy demands. Genetica. 143 93–100

    Article  CAS  PubMed  Google Scholar 

  • Muller FL, Song W, Jang YC, Liu Y, Sabia M, et al. 2007 Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293 1149–1168

    Article  Google Scholar 

  • Munoz-Soriano V and Paricio N 2011 Drosophila models of Parkinson's disease: discovering relevant pathways and novel therapeutic strategies. Park. Dis. Article ID 420640, doi:10.4061/2011/420640

  • Murthy KRS 2000 Ashtanga Hridaya (Sanskrit with English Translation) (Varanasi: Krishnadas Academy)

    Google Scholar 

  • Narendra D, Tanaka A, Suen DF and Youle RJ 2008 Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183 794–803

    Article  Google Scholar 

  • Ohkawa H, Ohishi N and Yagi K 1979 Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 94 341–348

    Google Scholar 

  • Palter KB, Watanabe M, Stinson L, Mahowald AP and Craig EA 1986 Expression and localization of Drosophila melanogaster Hsp7O cognate proteins. Mol. Cell Biol. 6 1187–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Sainy S, Khatoon R, Sharma D, Narayan G and Kar Chowdhuri D 2015 Overexpression of hsp27 rescued neuronal cell death and reduction in life- and health-span in Drosophila melanogaster against prolonged exposure to dichlorvos. Mol. Neurobiol.. doi:10.1007/s12035-015-9221-3

    Google Scholar 

  • Park J, Kim SY, Cha GH, Lee SB, Kim S and Chung J 2005 Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene. 361 133–139

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan B, Mutalik G and Tillu G 2015 Integrative Approaches for Health: Biomedical Research (London: Ayurveda and Yoga Elsevier/Academic Press)

    Google Scholar 

  • Peng C, Wang X, Chen J, Jiao R, Wang L, et al. 2014 Biology of ageing and role of dietary antioxidants. Biomed. Res. Int. 83 831841. doi:10.1144/2014/831841

    Google Scholar 

  • Pérez-Garijo A and Steller H 2015 Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development. 142 3253–3262. doi:10.1242/dev.127878

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrimon N, Bonini NM and Dhillon P 2016 Fruit flies on the front line: the translational impact of Drosophila. Dis. Model. Mech. 9 229–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen R, and Lindquist S 1988 The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene 72 161–168

  • Phillips JP, Campbell SD, Michaud D, Charbonneaut M and Hilliker AJ 1989 Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. U. S. A. 86 2761–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poltanov EA, Shikov AN, Dorman HJ, Pozharitskaya ON, Makarov VG, et al. 2009 Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis Gaertn, syn Phyllanthus emblica L) supplements. Phytother. Res. 23 1309–1314

    Article  CAS  PubMed  Google Scholar 

  • Prasad NG and Joshi A 2003 What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J. Genet. 82 44–76

    Article  Google Scholar 

  • Prasanth KV, Rajendra TK, Lal AK and Lakhotia SC 2000 Omega speckles - a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J. Cell Sci. 113 3484–3497

    Google Scholar 

  • Puri HS 2003 Rasayana: ayurvedic herbs for longevity and rejuvenation (New York: Taylor & Frauds London)

    Book  Google Scholar 

  • Rikans LE and Hornbrook KR 1997 Lipid peroxidation, antioxidant protection and aging. Biochim. Biophys. Acta. 1362 116–127

    Article  CAS  PubMed  Google Scholar 

  • Saltiel AR and Kahn CR 2001 Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 414 799–806

    Article  CAS  PubMed  Google Scholar 

  • Samarakoon SMS, Chandola HM and Shukla VJ 2011 Evaluation of antioxidant potential of Amalakayas Rasayana: a polyherbal Ayurvedic formulation. Int. J. Ayurveda Res. 2 23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawarkar R, Sievers C and Paro R 2012 Hsp90 gobally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149 807–818

  • Scartezzini P and Speroni E 2000 Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmacol. 71 23–43

    Article  CAS  PubMed  Google Scholar 

  • Schieber M and Chandel NS 2014 ROS function in redox signaling and oxidative stress. Curr. Biol. 24 R443–R462

    Article  Google Scholar 

  • Service PM 1987 Physiological mechanisms of increased stress resistance in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 60 321–326

    Article  Google Scholar 

  • Sharma PV 1994 Charaka Samhita (Sanskrit with English Translation) (Varanasi, India: Chaukhambha Orientalia)

    Google Scholar 

  • Shi Y, Nishida K, Giammartino DCD and Manley JL 2011 Heat shock-induced SRSF10 dephosphorylation displays thermotolerance mediated by Hsp27. Mol. Cell Biol. 31 448–464

    Google Scholar 

  • Shukla AK, Pragya P, Chaouhan HS, Patel DK, Abdin MZ and Kar Chowdhuri D 2014 A mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes. Neurobiol. Aging. 34 2419.e1e2419.e16

    Google Scholar 

  • Sies H 2015 Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4 180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK and Lakhotia SC 2016 Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock induced Hsp70 in Drosophila melanogaster. Cell Stress Chaperones. 20 105–121

    Article  Google Scholar 

  • Singh RH 2009 Body, mind, spirit- integrative medicine in Ayurveda nature and yoga (Varanasi: Chaukhamba Sanskrit Pratishthan)

    Google Scholar 

  • Sørensen JG and Loeschcke V 2001 Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J Insect Physiol 47 1301–1307

  • Stetina T, Kostal V and Korbelova J 2014 The role of inducible Hsp70 and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster). PLoS One. 10, e0128976

    Article  Google Scholar 

  • Swain U, Sindhu KK, Boda U, Pothani S, Giridharan NV, Raghunath M and Rao KS 2012 Studies on the molecular correlates of genomic stability in rat brain cells following Amalakirasayana therapy. Mech. Ageing Dev. 133 112–117

    Article  PubMed  Google Scholar 

  • Tsuzuki T, Nakatsu Y and Nakabeppu Y 2007 Significance of error-avoiding mechanisms for oxidative DNA damage in carcinogenesis. Cancer Sci. 98 464–470

    Article  Google Scholar 

  • Turner E, Brewster JA, Simpson NA, Walker JJ and Fisher J 2009 Imidazole-based erythrocyte markers of oxidative stress in preeclampsia-an NMR investigation. Reprod. Sci. 16 1040–1041

    Article  CAS  PubMed  Google Scholar 

  • Tyler RH, Brar H, Singh M, Latorre A, Graves JL, et al. 1993 The effect of superoxide dismutase alleles on aging in Drosophila. Genetica. 91 143–149

    Article  CAS  PubMed  Google Scholar 

  • Valiathan MS 2006 Ayurvedic biology: a decadal vision document (Bangalore: Indian Academy of Science)

    Google Scholar 

  • Velazquez JM and Lindquist S 1984 hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell. 36 644–662

    Article  Google Scholar 

  • Wang C, Liu Z and Huang X 2012 Rab32 is important for autophagy and lipid storage in Drosophila. PLoS One. 7, e32086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CH, Wu SB, Wu YT and Wei YH 2013 Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp. Biol. Med. 238 440–460. doi:10.1177/1434370213493069

    Google Scholar 

  • Wang HD, Kazemi-Esfarjani P and Benzer S 2004 Multiple-stress analysis for isolation of Drosophila longevity genes. Proc. Natl. Acad. Sci. U. S. A. 101 12610–12614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TF and Anholt RR 2012 Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster. PLoS One. 7, e34744

    Article  Google Scholar 

  • Yan LJ 2014 Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2 164–169

    Article  Google Scholar 

  • Yang Y, Gehrke S, Haque ME, Imai Y, Kosek J, Yang L, et al. 2005 Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/akt signalling. Proc. Natl. Acad. Sci. U. S. A. 102 13670–13674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota T, Sugawara K, Ito K, Takahashi R, Ariga H and Mizusawa H 2003 Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress and proteasome inhibition. Biochem. Biophys. Res. Commun. 312 1342–1348

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Davies KJA and Forman HJ 2015 Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med. 88 314–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao HW and Haddad GG 2011 Review: hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta 32 Suppl. B Trophoblast Res. 24 S104–S108

    Google Scholar 

Download references

Acknowledgements

We thank Arya Vaidya Sala, Kottakal (Kerala, India) for providing the Amalaki Rasayana formulation, and Prof MS Valiathan for initiating the coordinated studies on Science of Ayurveda. We thank Dr PK Tiwari (Gwalior, India) for providing the anti-Hsp27, Dr RM Tanguay (Canada) for anti-Hsp90 antibody and Dr MB Evgen’ev (Russia) for 7Fb and 7.10.3 antibodies. The Bloomington stock centre is acknowledged for providing various stocks used in present study. This work was supported in part by a grant (no. Prn.SA/ADV/Ayurveda/6/2006) from the Office of the Principal Scientific Advisor to Government of India (New Delhi), by the Raja Ramanna Fellowship of the Department of Atomic Energy (Govt. of India, Mumbai) and by a grant (no. CO/AB/010/2013) from Science & Engineering Research Council (DST, New Delhi), to SCL. The Confocal Facility, established by the Department of Science & Technology, Government of India (New Delhi), is supported by the Banaras Hindu University. VD is supported by research fellowship from University Grants Commission (New Delhi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C Lakhotia.

Additional information

Corresponding editor: V Radha

[Dwivedi V and Lakhotia SC 2016 Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster. J. Biosci.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, V., Lakhotia, S.C. Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster . J Biosci 41, 697–711 (2016). https://doi.org/10.1007/s12038-016-9641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9641-x

Keywords

Navigation